Towards an atomic Au-calculus
YR-ICALP 2015

Fanny He
f .he@bath.ac.uk

UNIVERSITY OF

5 BATH

5 July 2015

f.he@bath.ac.uk

Sharing, laziness and atomicity

The Apu-calculus: classical logic and continuations

An atomic AuS-calculus

Sharing subexpressions

m fibonacci n | (n==0) =0
| (Il== 1):1
| (m > 1) = fibonacci (n-1) + fibonacci (n-2)

m fibonacci2 n = fib 1 O n
where
fib n1 n2 n | (n == 0)
| (n==1)
| (m > 1)

n2
nl
fib (n1+n2) nl (n-1)

Sharing subexpressions

Exponential:
fibonacci n | (n == 0) = 0
| (n==1) =1
| (m > 1) = fibonacci (n-1) + fibonacci (n-2)
/ n \
(n—1) (n—2)

Sharing subexpressions

Linear:

fibonacci2 n = fib 1 O n

where
fib nl n2 n | (n == 0) = n2
| (n ==1) =nl
| (@ > 1) = fib (n1+n2) nl (n-1)
n nl :::><::: n2
(n—1) nl n2

Lazy evaluation

fib = O0:1:zipWith (+) fib (tail fib)
fibo n = fib !! n

m fib=[0,1,1,...]

m tail fib=[1,1,2,...]

m 0:1:zipWith (+) fib (tail fib)
=[0,1,0+1,1+1,1+2,...]
=10,1,1,2,3,...]

A \-calculus with atomicity

The A-calculus

[Church]

A tus= x| Axt] (t)u

B (Ax.t)(Ay.u) = t{(\y.u)/x}

The atomic A-calculus
[Gundersen, Heijltjes, Parigot]

A:tu o= x| dx.t|(t)u]| ulc]

[c] t= [x, ., Xxp < t]

[% « Ay.(Ea)lal ... [c]]

m Independent duplication of Ay
and u

m Naturally retrieves sharing and
laziness

Extend these properties to other calculi?

Continuations: the sandwich approach

EUESIN OO DR

In front of the refrigerator, thinking about a sandwich,

Stick a continuation in your pocket,

Use ingredients and make a sandwich (sitting on the counter),
Invoke the continuation in your pocket,

Back to 1, but there is a sandwich on the counter, and all
ingredients are gone: eat the sandwich.

Continuations: the sandwich approach

1L

ok WS

In front of the refrigerator, thinking about a sandwich,

Stick a continuation in your pocket,

Use ingredients and make a sandwich (sitting on the counter),
Invoke the continuation in your pocket,

Back to 1, but there is a sandwich on the counter, and all
ingredients are gone: eat the sandwich.

Continuations: the sandwich approach

1L

ok WS

In front of the refrigerator, thinking about a sandwich,

Stick a continuation in your pocket,

Use ingredients and make a sandwich (sitting on the counter),
Invoke the continuation in your pocket,

Back to 1, but there is a sandwich on the counter, and all
ingredients are gone: eat the sandwich.

Continuations: the sandwich approach

1L

ok WS

In front of the refrigerator, thinking about a sandwich,

Stick a continuation in your pocket,

Use ingredients and make a sandwich (sitting on the counter),
Invoke the continuation in your pocket,

Back to 1, but there is a sandwich on the counter, and all
ingredients are gone: eat the sandwich.

Continuations: the sandwich approach

1L

ok WS

In front of the refrigerator, thinking about a sandwich,

Stick a continuation in your pocket,

Use ingredients and make a sandwich (sitting on the counter),
Invoke the continuation in your pocket,

Back to 1, but there is a sandwich on the counter, and all
ingredients are gone: eat the sandwich.

Continuations: the sandwich approach

1. In front of the refrigerator, thinking about a sandwich,

Stick a continuation in your pocket,

Use ingredients and make a sandwich (sitting on the counter),
Invoke the continuation in your pocket,

Back to 1, but there is a sandwich on the counter, and all
ingredients are gone: eat the sandwich.

ok WS

Ap-caleuli [Parigot, Saurin]

m \ =y Intuitionistic Logic
m Ay ey Classical Logic (Av —A)

m Classical operators <+ Continuations [Griffin]
The AuS-calculus:

Streams S, T :=«a | toS
Terms t,u = x | Ax.t | (t)u | (t)S | pa.t

(po.t)u —>,, po. t{uoaja}

Explicit sharings and atomicity in Au-calculi?

A ApS-calculus with explicit sharings

Closures [¢], [{] == [X1,.- - Xp < t] | [71,--,7p < 5]
Streams S, T = « | to S| S[¢]
Terms t,u == x | Ax.t | (t)u| (¢)S | po.t | u[d]

The atomic AuS-calculus

Closures [¢], [{] == [Xq < t] | [7q < S] | [Xg «= Ay.t9] | [xg « uB.t9]
Streams S, T ::= «a | to S| S[¢]

Terms t,u == x | Ax.t | (t)u| (¢)S | po.t | u[d]

A-tuples tP = (t1,...,tp) | tP[¢]

Future work

m Check the properties of this calculus:
» Termination in a typed setting v’

Type preservation under reduction

Confluence

Preserving termination w.r.t. A

vvyy

m Extend to calculi with more general effects

	Sharing, laziness and atomicity
	The -calculus: classical logic and continuations
	An atomic S-calculus

