
Towards an atomic lambda-mu-calculus

Fanny He
F.He@bath.ac.uk

University of Bath, Claverton Down
Bath BA2 7AY, United Kingdom

Abstract. We construct a λµ-calculus with explicit sharing and atomic
reduction, the atomic λµ-calculus, which is a refinement of the λµ-calculus
implementing smaller steps of reduction on individual constructors. We
want to study explicit sharing in a calculus with control operators using
the concept of atomicity, which comes from deep inference.

1 Introduction and background

The methodology of deep inference [6] allows to apply inference rules inside for-
mulas, at arbitrary depth. This gives proof systems with interesting features such
as atomicity, where rules can be replaced by their restriction on atomic formu-
las, while preserving essential properties such as cut-elimination [11, 3]. With a
computational approach in mind, a λ-calculus with atomicity was developed to
be in Curry-Howard correspondence with an intuitionistic logical system with
deep inference in [7]. It showed how atomicity is related to optimal reduction
graphs [8], and by giving a fine control over duplications during a β-reduction,
allows to implement a fully lazy sharing reduction strategy [1]. To study the
computational content of atomicity in classical logic amounts to adding control
operators, which correspond to classical constructs [5] as in the λµ-calculus [9],
an extension of the λ-calculus corresponding to classical natural deduction. In
this abstract we introduce the atomic λµ-calculus, encompassing both classical
constructs and atomicity.

1.1 Deep inference and atomicity

An atomic calculus is a computational interpretation of the transformation ,
which encapsulates the idea behind open deduction and atomicity by using the
contraction rule M, and a linearized version of distributivity, the medial rule m:

A
M −−−−−−
A ∧A

(A1 ∧A2) ∨ (B1 ∧B2)
m −−−−−−−−−−−−−−−−−−−−−−−−−

(A1 ∨B1) ∧ (A2 ∨B2)

A ∨B
M −−−−−−−−−−−−−−−−−−−−

(A ∨B) ∧ (A ∨B)

A
M −−−−−−
A ∧A

∨
B

M −−−−−−−
B ∧B

..

(A ∧A) ∨ (B ∧B)
m −−−−−−−−−−−−−−−−−−−−

(A ∨B) ∧ (A ∨B)

In this transformation, we have two proof derivations from the assumption A∨B
to the conclusion (A∨B)∧ (A∨B). The open deduction proof on the right shows
how inference rules are restricted to smaller formulas, and exhibits the bidimen-
sional aspect of composition, since derivations can be composed horizontally with
connectives (the top-right ∨ in our example), and vertically (the dotted lines).

By repeatedly making transformations on smaller subformulas, we ultimately get
a derivation where the rules are only applied to atomic formulas. In the example
above, this atomicity property allows us to eventually replace the contraction
rule M by its atomic version, which is not possible in the sequent calculus [2].

1.2 The atomic λ-calculus

A λ-calculus with explicit sharing, the atomic λ-calculus [7], was developed as a
first computational interpretation via Curry-Howard of a deep inference system.

The atomic λ-calculus provides a refinement of the λ-calculus and extends it
with an explicit sharing constructor (denoted by [· · · ← •]) corresponding to the
contraction rule (similarly to explicit substitutions), a distributor constructor
(denoted by [· · · � •]) which is an interpretation of the medial rule, and the
use of unique variable names such that the β-reduction is implemented by a lin-
ear substitution while duplications are performed atomically with sharings and
distributors. Instead of the usual β-step (λx.u)t −→β u{t/x}, which substitutes
the term t for each of the p occurrences of the variable x in u, the result of a
reduction step in the atomic case is u[x1, . . . , xp ← t], where t is bound to the
variables x1, . . . , xp representing the distinct occurrences of x. The duplication
of t is then carried out atomically, one constructor at a time, by separate rules.

For example, from u[x1, . . . , xp ← λy.v] where λy.v is shared by x1, . . . , xp in
the term u, we want to eventually substitute x1, . . . , xp by λy.v, and therefore
need to get p copies of λy.v. To do this, the idea is to independently obtain copies
of the body v and of the constructor λy. First, we freeze λy (as indicated by �)
while replicating v p-times in a tuple 〈v1, . . . , vp〉, then perform the substitution
by distributing λy over the copies of v to obtain p copies of λy.v.

(λx.u[x1, . . . , xp ←x]) λy.v β u[x1, . . . , xp ←λy.v]

 ∗ u[x1, . . . , xp �λy.〈v1, . . . , vp〉[y1, . . . , yp ← y]]

 u{(λy1.v1)/x1} . . . {(λyp.vp)/xp}

The reduction above gives a computational interpretation of atomicity, and is
the main innovation of this calculus. In the atomic λ-calculus one can perform
duplications of subterms independently of their context, in an approach reminis-
cent of optimal reduction graphs [8]. This corresponds to using the medial rule
to perform contractions on smaller formulas.

2 The atomic λµ-calculus

We introduce the atomic λµ-calculus to extend the properties of the atomic λ-
calculus to a classical setting. However we must overcome two difficulties to de-
sign this calculus. First we need to adapt the structural rule from the λµ-calculus
to our setting, then we want to find an similar way to duplicate µ-abstractions,
copying independently the µ-constructor and the body of the abstraction.

2.1 The λµ-calculus

The λµ-calculus extends the λ-calculus by adding a µ-abstraction constructor:

λµ : t, u ::= x | λx.t | (t)u | µα.(t)β

In this calculus, terms t, u are called unnamed terms, and subterms of the form
(t)β are referred to as named terms, denoted by n (i.e. t is named by β). A
structural rule to reduce applications of µ-abstractions to terms is added to the
calculus. Intuitively this rule allows to apply operations on subterms, by passing
the argument t only to the subterms that have been named by the µ-variable α:

(µα.n)t→µ µα.n{(w) tα/(w)α}

2.2 A λµ-calculus with streams and explicit sharings

The substitution {(w) tα/(w)α} performed after →µ cannot be directly ex-
pressed with an explicit substitution. Considering an explicit substitution con-
struction such as 〈 (w)α := (w) tα 〉 would be problematic since the pattern-
matching is made on all subterms of the form (w)α. We face the same difficulties
with explicit sharings. Consider the following example v with β occurring three
times in n, and its atomic translation V where all variables occur linearly:

v = (µβ.n) t1 t2
atomic

7−→ V = (µβ.N [β1, β2, β3 ← β]) T1 T2

We now need to translate the reduction steps v →µ (µβ.n{(w) t1 β/(w)β})t2 →µ

µβ.n{(w) t1 t2 β/(w)β}.
The →µ-rule modifies the structure of all subterms of the form (w)β, there-

fore we cannot directly express this reduction in terms of sharings of the form
[var1, . . . , vark ← subexpression].

To solve this problem, we store the whole list of arguments in a right-
associative list or stream (the operator is denoted by ◦), such that:

V→µ (µβ.N [β1, β2, β3 ← T1 ◦ β])T2 →µ µβ.N [β1, β2, β3 ← T1 ◦ (T2 ◦ β)]

We therefore work on a variant of the λµ-calculus, the λµS-calculus [10, 4], which
considers right-associative stream applications ◦:

Streams S, T ::= α | t ◦ S Terms t, u ::= x | λx.t | (t)u | µα.(t)S

The rule →µ then becomes (µβ.(t)S)u −→µt
µβ.((t)S){(u ◦ β)/β}. We then

extend the λµ-calculus with streams to a calculus with explicit sharings:

Sharings [φ], [ψ] ::= [x1, . . . , xp ← t] | [γ1, . . . , γp ← S]

Streams S, T ::= α | t ◦ S | (t ◦ S)[φ]

Names n,m ::= (t)S | n[φ]

Terms t, u ::= x | λx.t | (t)u | µα.n | u[φ]

2.3 The atomic λµ-calculus λµSa

We get the atomic λµ-calculus by adding a distributor constructor [· · · ⇐ •] for
µ-abstractions. Similarly to λ-distributors [· · ·� •], the µ-distributor enables to
duplicate the µ-constructor independently of the body inside a µ-abstraction.

Because of the distinction between terms and streams, the general form of
expressions in λµSa is more complicated and the duplication steps explicitly

separate the sharing of terms and streams. However, the idea behind the du-
plication remains the same, since we first duplicate the body (corresponding to
(t)S), then distribute the µ-abstraction over the copies of (t)S. Sharings and dis-
tributors [φ1], . . . , [φr] are reduced until all occurrences α1, . . . , αp representing
α are gathered in the sharing [α1, . . . , αp ← α], then the remaining [φ′1] . . . [φ′r′]
can be pushed outside of the distributor before performing the substitution.

u[x1, . . . , xp ←µα.((t)S [φ1] . . . [φr])]

∗
u[x1, . . . , xp ⇐ µα.〈(t1)S1, . . . , (tp)Sp〉[α1, . . . , αp ← α]][φ′1] . . . [φ′r′]

(u{(µα1.(t1)S1)/x1} . . . {(µαp.(tp)Sp)/xp})[φ′1] . . . [φ′r′]

3 Results and next steps

Following the idea of the atomic λ-calculus, we have constructed a classical
calculus with explicit sharings that satisfies atomicity. Moreover, a type system
for the atomic λµ-calculus can also be given using the sequent calculus, with the
main new rule being the introduction of the µ-distributor.

The next step is to prove properties of the small-step reduction. Our calculus
is built upon the atomic λ-calculus, which keeps the fundamental properties of
the λ-calculus. We thus expect to retrieve the main properties of the λµ-calculus
such as confluence, then strong normalisation and subject reduction in a typed
setting, and to preserve strong normalisation with respect to the λµ-calculus.

Acknowledgement. I am deeply grateful for insightful discussions to Willem
Heijltjes, Guy McCusker and Valentin Blot, to Andrea A. Tubella and Ben Ralph
for their helpful comments, and to the reviewers for their useful and detailed re-
marks to improve this abstract.

References

1. T. Balabonski. A unified approach to fully lazy sharing. In POPL, pages 469–480,
2012.

2. K. Brünnler. Two restrictions on contraction. Logic Journal of the IGPL,
11(5):525–529, 2003.

3. K. Brünnler and A. Tiu. A local system for classical logic. In LPAR, 2001.
4. M. Gaboardi and A. Saurin. A foundational calculus for computing with streams.

In ICTCS, 2010.
5. T.G. Griffin. A formulae-as-types notion of control. In POPL, 1990.
6. A. Guglielmi. A system of interaction and structure. CoRR, cs.LO/9910023, 1999.
7. T. Gundersen, W. Heijltjes, and M. Parigot. Atomic lambda calculus: A typed

lambda-calculus with explicit sharing. In LICS, 2013.
8. J. Lamping. An algorithm for optimal lambda calculus reduction. In POPL, pages

16–30, 1990.
9. M. Parigot. λµ-calculus: An algorithmic interpretation of classical natural deduc-

tion. LPAR, 624:190–201, 1992.
10. A. Saurin. Typing streams in the Λµ-calculus. ACM Trans. Comp. Logic,

11(4):28:1–28:34, 2010.
11. A. Tiu. A local system for intuitionistic logic. In LPAR, 2006.

