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Abstract

A cornerstone of theoretical computer science is the Curry-Howard correspondence

where formulas are types, proofs are programs, and proof normalization is computation.

In this framework we introduce the atomic λµ-calculus, an interpretation of a classical

deep inference proof system. It is based on two extensions of the λ-calculus, the λµ-

calculus and the atomic λ-calculus. The former interprets classical logic, featuring

continuation-like constructs, while the latter interprets intuitionistic deep inference,

featuring explicit sharing operators.

The main property of the atomic λ-calculus is reduction on individual constructors,

derived from atomicity in deep inference. We thus work on open deduction, a deep

inference formalism, allowing composition with connectives and with derivations, and

using the medial rule to obtain atomicity. One challenge is to find a suitable formulation

for deriving a computational interpretation of classical natural deduction. A second

design challenge leads us to work on a variant of the λµ-calculus, the ΛµS-calculus,

adding streams and dropping names.

We show that our calculus has preservation of strong normalization (PSN), confluence,

fully-lazy sharing, and subject reduction in the typed case. There are two challenges

with PSN. First, we need to show that sharing reductions strongly normalize, under-

lining that only β, µ-reductions create divergence. Our proof is new and follows a

graphical approach to terms close to the idea of sharing. Second, infinite reductions

of the atomic calculus can appear in weakenings, creating infinite atomic paths cor-

responding to finite ΛµS-paths. Our solution is to separate the proof into two parts,

isolating the problem of sharing from that of weakening. We first translate into an

intermediate weakening calculus, which unfolds shared terms while keeping weakened

ones, and preserves infinite reductions. We then design a reduction strategy preventing

infinite paths from falling into weakenings.
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To Paul-André Melliès, Michele Pagani, and Alexis Saurin, you gave me the courage

for this adventure, thank you for your kindness and encouragement.

Thanks to Valentin Blot, Etienne Duchesne, Twey Kay, Dave Sherratt for many cap-

tivating discussions about work and life.

I also greatly benefited from discussions with Anupam Das, Delia Kesner, and Jim

Laird.

For their encouragement and kindness, I would like to thank Pierre Boudes, Paola

Bruscoli, Giulio Manzonetto, and Lionel Vaux.

Thanks to the friends and colleagues I met in Bath and elsewhere, who were there when

times were hard, who could uplift me with their conversations and inspire me. You’ve

all been a great help.

For their continued support and love, I would also like to thank my parents. Thank

you for giving me a push forward when I needed it most.

Nans, I would be a completely different person if I hadn’t met you. For letting me rely

on you, for your infallible support and trust, thank you.

2



Contents

1 Introduction 5

1.1 Early to modern proof theory . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Technical introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 The atomic lambda-mu-calculus 26

2.1 The basic ΛµS-calculus: ΛµS−a . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 The atomic Λµ-calculus: ΛµSa . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Typing terms in the sequent calculus . . . . . . . . . . . . . . . . . . . . 40

2.4 Typing terms in Open Deduction . . . . . . . . . . . . . . . . . . . . . . 41

3 Connecting ΛµSa to ΛµS: towards PSN 58

4 The weakening calculus 67

4.1 The weakening calculus ΛµSw . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Properties of J−Kw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 PSN for ΛµSw: exhaustive strategy . . . . . . . . . . . . . . . . . . . . . 81

5 Strong normalization of sharing reductions 95

5.1 Preliminaries on multisets . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Weakening reduction as a measure . . . . . . . . . . . . . . . . . . . . . 97

5.3 Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3



5.4 Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.5 Strong normalization of −→s . . . . . . . . . . . . . . . . . . . . . . . . 122

6 Proof of PSN and confluence 135

6.1 Preservation of strong normalization . . . . . . . . . . . . . . . . . . . . 135

6.2 Corollary: confluence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7 Fully-lazy sharing 141

8 Conclusions 145

8.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.2 Next steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4



Chapter 1

Introduction

In this thesis, we investigate the atomic λµ-calculus, a computational calculus corre-

sponding to classical logic inspired by the deep inference methodology. This chapter

first skims through the history of the questions that shaped proof theory, its method-

ology and aims, underlying our work. This intellectual tradition shapes the research

questions investigated in the next chapters. We then introduce some of the more re-

cent technical progress on which our research builds, the classical version of the Curry-

Howard correspondence, and the deep inference formalism. Another section describes

some motivations behind our work. The chapter ends with an outline of the thesis.

1.1 Early to modern proof theory

In this section, we first describe the birth of proof theory. Then, we give a short account

of its influence on the mathematician’s approach to (the philosophy of) mathematics.

It concludes by briefly linking historical developments to modern trends in proof theory.

Proof theory has its roots in the foundational crisis of mathematics. Mathematics

and logic were constantly subject to “language paradoxes”, such as the Cretan liar

stating “I am lying (right now)”. Whilst this sentence could be dismissed as a joke, the

absence of formal context could not provide any satisfying explanation for why this is

not a mathematical statement, or why one could not formalize such a contradiction in

the mathematics of arithmetic or analysis. Unfortunately, with insufficiently defined

notions such as functions or continuity, paradoxes did appear, and even worse, attempts

to formalize mathematics were often themselves subject to contradictions (thus “naive”

set theory). Were mathematics fundamentally flawed, unable to provide a context to

differentiate truth from falsity? Hilbert thus formulated a plan for a solution, which
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became known as Hilbert’s program. The idea was to give a simple axiomatic system,

allowing only (meta-mathematical) finitist means, that could be used to demonstrate

all theorems, while being safe from any inconsistency. The finiteness would ensure that

correctness can be proved in a purely mechanically verifiable way, purging any doubt

of absolute truth. This program can be seen as a strong manifestation of the positivist

philosophy of the post-enlightenment era, positing that through the sole pursuit of

scientific reason humanity will solve all problems in a definite way. Unfortunately,

Gödel’s theorems came as the demise of this program, as they show that no such

system could exist. No system strong enough to encode arithmetic can be complete,

consistent, and decidable. Yet Gentzen gave a proof of arithmetic’s consistency through

the cut-elimination of sequent calculus. Since it cannot contradict Gödel’s theorems,

this proof had to abandon parts of Hilbert’s initial plan, and indeed it only gives a proof

of relative consistency, that cannot be established without appeal to the consistency

of a stronger system. The introduction of his proof systems were instrumental in

establishing proof theory, since beyond the syntactical game of proofs it introduced

new ways to see mathematics and showed how it could lead to proofs of substantially

nontrivial theorems. Proof theory, which had been forming in the works of logicians

such as Frege and Russell, is thus widely seen as coming out of the ruins of Hilbert’s

program.

The foundational crisis, besides its philosophical inquiry into the ontology of mathemat-

ics, thus also embodied an absolutist view of science, which was contested by eminent

mathematicians. This lead to acrimonious feuds between mathematicians, and in par-

ticular between Hilbert and Brouwer, who discarded formalism as a mere symbolic

game, and promoted the intuitionistic school of mathematics. The logical approach

continued to be seen as unfruitful for true mathematics for a long time, with René

Thom going as far as saying “Whatever is rigorous is insignificant”. In other words,

the price of formalism is so high that it prevents from doing any “true mathematics”

while being rigorous. The success of formalism, ultimately, was really foreign to the

mathematician’s activity. Poincaré, on the subject, famously said “Logic sometimes

makes monsters. For half a century we have seen a mass of bizarre functions which

appear to be forced to resemble as little as possible honest functions which serve some

purpose. More of continuity, or less of continuity, more derivatives, and so forth. [...]

In former times when one invented a new function it was for a practical purpose; today

one invents them purposely to show up defects in the reasoning of our fathers and

one will deduce from them only that.” His position on the importance of the formal-

ist approach, or rather the duality and complementarity of the intuitionistic and the

formalist nature of the mathematician’s work, was beautifully presented in his talk
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“De l’intuition et de la logique en mathématiques”. This would have been the definite

opinion on the intuitionist/formalist approach if it wasn’t for the convergence of the

two, due to the Curry-Howard-Lambek correspondence, or computational trinitarian-

ism. This gives a new dream of seamlessly doing high-level creative mathematics and

proving them formally, as heralded by Voevodsky. While this is outside of the scope

of this thesis, his program of univalent foundations of mathematics is a complete reen-

visioning of the foundations in a proof-theoretic light, through homotopy type theory

(HoTT) [Uni13].

The striking foresight of Hilbert’s program lies in how it anticipated the digital age, for

the use of a formal language to encode mathematics opens the possibility to check proofs

completely automatically. Beyond that, the work on computers led people to investigate

the nature and meaning of computation, formalized by Turing machines and the λ-

calculus. Surprisingly enough, the two formalisms are equivalently powerful, each one

can encode the other, thus encode any computation (the Church-Turing hypothesis).

But even more surprising was that the λ-calculus is equivalent to natural deduction,

the intuitionistic logical system; far from being a mere mathematical curiosity, this

result shows that computing is proving, and proving is computing. This realization

was then enriched by the equivalence of the equational theory with cartesian closed

categories. These equivalences were extended in many ways, and most prominently to

classical logic, giving an equivalence between control operators and Peirce’s law. This

formal equivalence is also extended to an informal version used to guide intuitions about

general purpose programming languages primitives and their mathematical power. By

bridging the gap between high-level programming languages and formal methods, it

is thus possible to express complex mathematical ideas in a natural way, to prove the

correctness of programs, and to program proofs of correctness. Great advances have

been made on these fronts since De Bruijn’s theorem checker Automath, forerunner

of proof assistants, that are currently spearheaded by Racket, Scala and Haskell in

programming language research and Agda and Coq as proof assistants.

1.2 Technical introduction

In this section, we introduce two independent mathematical developments, proof sys-

tems and computational calculi, which were later proved to be equivalent. Since our

work builds on the interplay between the two, we first introduce two simple systems

and describe the equivalence. We then introduce two parallel works extending the first

systems, giving more involved correspondences. Our calculus is directly constructed to
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cast them in a unified framework. In the first subsection, we introduce natural deduc-

tion, the proof system used in this thesis. The second section introduces the λ-calculus,

a simple model of computation. The third subsection describes the link between these

two domains, or Curry-Howard correspondence. It is followed by a brief introduction

to category theory, which is then linked as the third aspect of computational trini-

tarianism. The fourth section gives the correspondence in the deep inference setting,

extending the λ-calculus with the atomicity property. The fifth section presents the

classical Curry-Howard correspondence, extending to classical natural deduction and

introducing a new operator to the calculus.

1.2.1 Proof theory

Proof theory aims, as its name suggests, to give a mathematical framework to reason on

proofs as mathematical objects, on which one may reason and deduce properties. It was

a key element of Hilbert’s program, that introduced Hilbert-style proof systems with one

main inference rule, modus ponens, which from a proof of A and a proof of A→ B gives

a proof of B. Modus ponens was seen as epitomizing direct reasoning in mathematics,

and thus was given the central role in Hilbert’s proof theory. When Gentzen introduced

his proof systems, natural deduction and sequent calculus [Gen35, Gen69], in which

the modus ponens is represented by the cut rule, his proof of consistency relied on

cut-elimination. By removing all cuts, we get a normal proof that has the subformula

property, i.e. every formula that appears in the reasoning must appear in the conclusion,

and this way one cannot complete a proof of falsity. In other words, modus ponens,

the central rule of Hilbert systems, can be completely dispensed with. But the cut rule

is not a superfluous rule, as the equivalent cut-free proof can be much bigger than the

initial proof. A proof with a cut thus is an implicit object, that can be made explicit

through cut-elimination; in Girard’s metaphor, it is like a cheque, that you can treat

as an explicit object (if this is a cheque by Donald Knuth, you frame it on your wall),

or you can treat it as an implicit object, go to the bank and cash it.

In this thesis, we work on natural deduction systems, that we will present with sequents

to underline the link with term calculi. Let Latin letters A,B, . . . denote formulas,

and Greek letters Γ,∆ denote lists of formulas. Having a sequent (or judgment) Γ ` ∆

means that whenever all elements in the list of premises (or assumptions) Γ are true,

one formula in the conclusion ∆ is true. To obtain a proof system, we must now be

able to apply rules to act on proofs; these are written in a tree form:

8



Γ1 ` ∆1 r
Γ2 ` ∆2

In other words, it means that by applying an inference rule r, we obtain a proof (or

derivation) of Γ2 ` ∆2 from a proof of Γ1 ` ∆1. So there is a notion of natural, or

meta implication (the rule) and the implication in proofs (A→ B).

In Gentzen’s original natural deduction, sequents consist of a list of formulas Γ as

premise, and of one formula C as conclusion. Rules work on the conclusions on the

right hand side of `, and can either introduce connectives, or dually eliminate them.

The system (in propositional logic) is built with the following rules:

Ax
C ` C

Γ, A ` C →i
Γ ` A→ C

Γ ` A→ C Γ′ ` A →e (cut)
Γ,Γ′ ` C

Γ ` C1 Γ′ ` C2 ∧i
Γ,Γ′ ` C1 ∧ C2

Γ ` C1 ∧ C2 ∧jeΓ ` Cj

Γ ` Cj ∨jiΓ ` C1 ∨ C2

Γ ` C1 ∨ C2 Γ′, C1 ` C3 Γ′′, C2 ` C3 ∨e
Γ,Γ′,Γ′′ ` C3

If we restrict this system to the three first rules, we obtain a system corresponding to

minimal logic, the fragment obtained by restricting formulas to axioms and implication

rules.

From there, many variant formalisms were developed with different motivations such

as a close relation to a computational calculus, or good complexity properties (such as

the deep inference formalism studied later).

1.2.2 The λ-calculus

Church’s own approach to the foundation of mathematics led him to introduce the

λ-calculus [Chu32], a model of computation which can be seen as a formal functional

programming language. It is a theory whose objects are functions (called terms), and

whose subject is the function application procedure (called β-reduction).

Terms of the λ-calculus are defined by the following syntax:

t, u ::= x | λx.t | (t) u

where x is a variable, λx.t is a λ-abstraction (or an anonymous function), and (t) u

is the application of the term t to the term u. The main relation between terms is
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β-reduction, which corresponds to function application. Applying the λ-abstraction

λx.t to the argument u gives t in which all occurrences of x have been replaced by u:

(λx.t)u −→β t{u/x}

In other words, the term is reduced by applying a reduction step, or equivalently a

reduction corresponds to one step of a computation. A term is in normal form if no

reduction can be applied, and thus corresponds to the result of a computation. The

notation t1 −→β∗ t2 denotes that t2 can be obtained by an arbitrarily long sequence of

reductions (it is the reflexive transitive closure of the β-reduction).

With this extremely terse syntax, it is not obvious to see that in fact, every computable

function can be written as a λ-term. To show it, Church gave an encoding of arithmetic.

In particular, he represented natural numbers in the λ-calculus, using what is now

known as the Church integers:

n ≡ λf.λx. (f) . . . (f)︸ ︷︷ ︸
n

x.

To define the arithmetic operations, one needs to define terms that act on Church

integers like their counterparts act on integers; for example the addition operator can

be written

+ ≡ λm.λn.λf.λx.(m)f((n)fx)

and one can thus check that n+m ≡ (+)nm −→β∗ n+m.

One operation, the predecessor, was notably difficult to encode, and Church was con-

vinced of the impossibility to find a λ-term for it until his student Kleene found an

answer, at the dentist, while getting his wisdom teeth pulled.

However, the λ-calculus, seen as a logical system, is not consistent; one can encode the

dreaded Russell paradox by the term Ω , (λx.(x)x)λx.(x)x, which infinitely β-reduces

to itself. Therefore Ω has no normal form, and some terms correspond to computations

that never terminate. Yet there is a notion of algorithmic consistency that can be

retrieved, the confluence property of the calculus. If there is a normal form, it is

unique, and there is always a finite sequence of reductions that leads to the normal

form. Rome does not always exist, but if it does, then there is a way to reach it. The
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confluence property can be illustrated by the following diagram.

u t1

t2 v

β∗

β∗ β∗

β∗

For any term u, if there exist two reduction paths to terms t1 and t2, then there is

a way to close the “diamond” diagram by finding a term v such that there exist two

reduction paths from t1 and t2 to v.

In order to forbid infinite computations and this way get a logically consistent system,

we can assign types to terms, in the spirit of Russell and Whitehead’s Principia Mathe-

matica, that introduced type theory as a solution to Russell’s paradox. In this setting,

each term is assigned a type, and the formation of the term must be consistent with

the term types. For instance, the simply typed λ-calculus is obtained with only one

type constructor, the function (→) constructor:

A,B ::= a | A→ B

where a is a base (atomic) type. In particular, an abstraction λx.t constructed with a

variable x of type A and a term t of type B (in which all free occurrences of x are of

type A) will be given the type A → B, and an application (t)u can be typed if t has

a function type A→ B and u has the type A (the argument type of t). Terms in this

setting not only always have a normal form, but any sequence of reduction leads to the

normal form, a result known as strong normalization.

Furthermore, it is possible to omit types entirely, and have the compiler infer the correct

types when they exist. The Hindley-Milner algorithm performs type inference in a very

efficient way for the λ-calculus with some parametric polymorphism added through the

let construct, and forms the base of type inference for many functional programming

languages. The simply typed system is as its name suggests very simple, but it does not

allow us to write natural abstractions, as every type needs its own identity function.

Type polymorphism allows us to write ∀α.α → α as the type of the identity function

that works for any type. With this type system, it is possible to program with natural

abstractions, such as lists or trees, that are called in general purpose programming

languages as generic data structures.

In simply typed systems terms only depend on terms, but it is possible to consider cal-

culi with terms depending on types (which gives polymorphism), types depending on

types (type operators) and types depending on terms (dependent types). By consider-
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ing each notion of type constructors as a dimension, we obtain the λ-cube, whose origin

is the simply typed λ-calculus, and whose furthest corner corresponds to the calculus

of constructions (CoC), the type system underlying Coq. Each extension can be added

while retaining strong normalization, but proving so is a hard task. One of the most

important breakthroughs is Girard’s proof through the candidates of reducibility tech-

nique of the strong normalization of System F [Gir72], or λ-calculus with parametric

polymorphism. Since proving the normalization of first-order typed calculi corresponds

to the consistency of arithmetic, or equivalently the consistency of the ordinal ε0, the

normalization of second-order typed calculi corresponds to second-order arithmetic, in

other words of analysis. However the extended expressive power of System F compared

to the first-order polymorphism of Hindley-Milner comes at the price of type inference’s

decidability, in other words the compiler needs type annotations to perform its task.

1.2.3 The Curry-Howard-Lambek correspondence

The Curry-Howard-Lambek correspondence describes the tight connection between log-

ical systems, computational calculi, and category theory. Thus, there are three lenses

through which we can see computation, as in the old tale where blind men each give

their own description of an elephant after touching it, but all descriptions seem incom-

patible. In fact, each one describes a different part (the trunk, legs and tail) without

understanding the whole animal. The Curry-Howard-Lambek correspondence is the

way to synthesize their views in a coherent sketch. This correspondence has a formal

aspect, where the correspondence is tight (an isomorphism) and allows us to directly

transfer results between the formalisms, and a looser aspect primarily used to guide

intuitions.

The rigorous aspect was discovered first by Curry, through the equivalence between

combinatory logic and Hilbert systems [Cur34]. The correspondence between λ-calculus

and natural deduction was not to be made until several decades later by Howard

[How80]. Basically, one obtains a proof in minimal logic by erasing the term in a

typing judgment in simply typed λ-calculus:

Var
x : A ` A

t : Γ, A ` B
λ

λx.t : Γ ` A→ B

t : Γ ` A→ B u : Γ′ ` A
@

(t)u : Γ,Γ′ ` B

This correspondence was then extended to a trinity when Lambek explicitly described

the link between the equational theory of simply typed λ-calculus and cartesian closed
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categories (CCC’s). This approach prompted the study of categorical semantic models

of programming languages.

Eilenberg and MacLane’s category theory is in a sense “a mathematics of mathemat-

ics”, as it studies mathematical theories as objects and morphisms (transformations)

preserving their structure. The only requirement is that the composition of morphisms

is always defined, and that composition is associative. Since these requirements are

very lax, many theories can be studied this way, such as sets with functions, algebraic

structures with homomorphisms, or sets with preorder relations. The study thus fo-

cuses on the interaction between objects (their “social life”), which forms a specific

class of category (e.g. CCC’s). Since any structural invariant on a class of categories

can be applied to the corresponding mathematical structure, these are very general re-

sults, to the point of being facetiously called “general abstract nonsense”. A functor is

then a transformation between categories (a morphism in the category of categories),

that maps objects in the first category to objects in the second category, and mor-

phisms to morphisms, consistently with the composition requirement. If categories are

0-dimensional objects (points), functors are thus 1-dimensional (lines), and one gets

2-dimensional objects by considering natural transformations, or morphisms between

functors (in a 2-category). This concept is the main motivation behind category theory,

as it captures in a mathematical notion the vague mathematician’s intuition that some

structures are naturally related. Note that in category theory we can simply reverse

the arrows to get the dual category, and thus essentially get the dual notions for free

(the initial object is dual to the terminal object, a product is dual to the coproduct).

The prototypical category is Set, with sets as objects and functions as morphisms. For

any sets A and B, its cartesian product A×B is a set, therefore Set should include all

finite cartesian products of sets, the empty product > being called the terminal object.

An example of functor F from Set to itself is the product by another set X, taking

any set A to the set A×X. Furthermore, since for any sets A and B, functions from

A to B form a set, there should be an object A ⇒ B representing the set Set(A,B)

of morphisms from A to B. This object is called the exponential object, and is defined

satisfying the main condition:

Set((C ×A), B) ∼= Set(C, (A⇒ B))

It states that given any set C, we obtain an isomorphic natural transformation between

Set((C × A), B) and Set(C, (A ⇒ B)), a result know as currying, which intuitively

states that a function from a product C×A to B is equivalent to a function from C that

returns a function from A to B. A category where all finite products and exponential
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objects are defined is called a cartesian closed category. In a sense, CCC’s thus capture

the categories, such as Set, that are functionally well-behaved.

The idea behind the categorical account of the correspondence is to identify the equa-

tional theory of the logic system with the internal language of a specific class of cat-

egories. To achieve that, the functional nature of terms of the λ-calculus naturally

suggests to represent terms as morphisms, with the composition being the application.

The objects are thus the types, and the set of terms of type A → B in a category C
simply becomes C(A,B), the set of morphisms from A to B. The identity terms (λx.x)

naturally play the role of identity morphisms for each type. To encode the abstraction

constructor, intuitively, we want to have “morphisms” taking “morphisms” as inputs.

This describes the notion of exponential object. It follows that the equational theory

of the simply typed λ-calculus describes the structure of CCC’s.

Thus the Curry-Howard-Lambek correspondence informs us, like Monsieur Jourdain

who did not know he was speaking prose all along, that computing is proving, and

proving is computing. This revelation gave a new way to envision correct programs:

instead of debugging and testing, one proves that it computes the correct result. De

Bruijn implemented this aspect of the correspondence in Automath, introducing a

formal language designed to allow automatic proof-checking for mathematical theories,

which paved the way for modern proof assistants. It is worth noting that De Bruijn

was unaware of Howard’s work, and thus stated the correspondence independently, as

well as introducing ideas that were later reinvented or became part of proof theory,

such as dependent types, or technical innovations such as explicit substitutions and De

Bruijn indices.

The three-way correspondence can be informally summarized in the following chart:

Programming Logic Categories

Type Formula Object

Typed program Derivation Morphism

Unit type True Terminal object >
Void type False Initial object ⊥
Function composition Cut Morphism composition

Product type Conjunction Product functor

Disjoint sum type Disjunction Coproduct functor

Function type Implication (→) Exponential functor

14



1.2.4 Deep inference and the atomic λ-calculus

Deep inference was introduced as a general methodology to introduce proof systems

with better complexity-theoretic properties, less bureaucracy, and a simpler syntax. Its

central concepts are linearity, i.e. the quantification of resource usage, and geometry,

i.e. the locality of information.

The methodology of deep inference was introduced to express logics which are not

definable in Gentzen’s sequent calculus, such as Guglielmi’s BV [Gug07]. The “deep”

qualifier comes from the fact that rules can be applied at any depth of a formula, in

opposition to “shallow” inference where rules can solely be applied to the root of a

formula (seen as a tree). In deep inference all rules are local, i.e. they can be checked

in constant time, and atomic i.e. their application can be restricted to atoms. The

first deep inference formalism is the calculus of structures, introduced as a deduction

system enjoying top-down symmetry, i.e. proofs can be negated and flipped upside

down, retrieving the duality between identity and cut that was concealed in the tree

derivations of sequent calculus. However, because this system is sequential, i.e. proofs

are made of sequences of formulas to which rules are applied, it differentiates some

proofs that are logically equivalent, such as:

A ∧B
A ∧D
C ∧D

6=
A ∧B
C ∧B
C ∧D

Open deduction was introduced later as a more general formalism, able to obtain this

symmetry by giving proofs a two dimensional structure. For instance, the derivations

above are identified as:
A
C
∧ B
D

Note that deep inference is a general formalism that can be widely applied. Deep

inference systems have been developed for classical [BT01], intuitionistic [Tiu06], linear

[Str02], and some modal logics [SS05], still satisfying the same proof-theoretic properties

as in traditional systems such as cut-elimination [Brü06, Brü03a] or more generally

normalization, giving a notion of normal form for proofs. Using atomic flows i.e.

graphs tracing structural rules of a proof, normalization has been shown to be obtained

in quasipolynomial time, making these systems more efficient and a subject for proof-

complexity research [BGGP15, Das12].

15



The syntax of open deduction derivations is as follows:

A=⇒

C

::= A |
A1=⇒

C1

∧
A2=⇒

C2

|
C1

=
⇒

A1

→
A2=⇒

C2

|

A=⇒

B
B′=⇒

C

r

The arrows give the direction of a derivation. Downward arrows correspond to the

standard derivation where the top formula is the premise and the bottom formula the

conclusion. Upward arrows reverse the roles: in the case of the implication, the left

hand side is a derivation from A1 to C1. A derivation from A to C can be a formula

i.e. A = C, a conjunction of two derivations giving a derivation from A = A1 ∧ A2 to

C = C1 ∧ C2, an implication giving a derivation from A = C1 → A2 to C = A1 → C2,

or the vertical composition of two derivations using a rule r.

But their most interesting feature in the context of this thesis is atomicity, which makes

possible to replace rules by their atomic restriction, thanks to a linearized distributivity

rule called the medial rule m and the switch rule s:

(A ∧B) ∨ (C ∧D)

(A ∨ C) ∧ (B ∨D)
m

A ∧ (B ∨ C)

(A ∧B) ∨ C s

In particular, unlike in the sequent calculus [Brü03b], it becomes possible to replace

contractions M and cocontractions O by their atomic version:

A
A ∧A M

A ∨A
A

O
A→ B

(A→ B) ∧ (A→ B)
M 

A
A ∨A O→

B
B ∧B M

(A→ B) ∧ (A→ B)
m

The transformation above illustrates how the contraction of an implication A → B is

replaced by contractions on smaller subformulas A and B. By repeating this process,

we are eventually able to get a proof where inference rules are solely applied to atomic

formulas.

The first Curry-Howard style interpretation of deep inference was obtained for a calcu-

lus with an intuitionistic natural deduction system, introduced in [BL05, BM08]. This

calculus was introduced as a new way to describe derivations in Guglielmi’s Formalism

A, with reduction rules removing bureaucracy (i.e. identifies two morally equivalent

proofs), in order to address cut-elimination. Terms (called proof terms) are essentially

a notation for proofs, so instead of variables, abstractions, applications, they consider

identity, rule, composition, conjunction, implication, where rule is one of the infer-
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ence rules of intuitionistic logic. Unlike in the λ-calculus, function composition is used

instead of application. Their calculus is closely related to categorical combinatorics,

and thus can be seen as a rewriting theory on the syntax of cartesian closed categories.

However, it does not satisfy preservation of strong normalization.

Originating from computational considerations, a typed λ-calculus with explicit shar-

ing, the atomic λ-calculus [GHP13] was developed to correspond to an intuitionistic

deep inference system via a Curry-Howard-style isomorphism. This calculus is one of

the two pillars on which the thesis builds. The syntax is as follows:

Terms t, u ::= x | λx.t | (t)u | u[φ]

Closures [φ], [ψ] ::= [ ~xp ← t] | [ ~xq � λy.tq]

Tuples tp ::= 〈 t1, . . . , tp 〉 | tp[φ]

This calculus refines the λ-calculus with a sharing constructor [x1, . . . , xn ← t] cor-

responding to contraction (as in explicit substitution-calculi [ACCL91]), a distributor

constructor [x1, . . . , xn � λy.tn], a computational interpretation of the medial rule al-

lowing us to perform atomic reduction steps, i.e. duplications of subterms independently

of their context, and the use of unique variable names such that the β-reduction is im-

plemented by a linear substitution. The β-reduction (λx.u)t −→β u{t/x} substituting

t for each of the p occurrences of the variable x in u, becomes (λx.u[x1, . . . , xp ←
x])t  β u[x1, . . . , xp ← t] in the atomic calculus, where t is bound to the variables

x1, . . . , xp representing the distinct occurrences of x. The duplication of t is then car-

ried out atomically, one constructor at a time, by separate rules. In the following

example, after the first reduction, we share λy.v with x1, . . . , xp in u, then we freeze λy

(as shown by �) while replicating v p-times in a tuple 〈v1, . . . , vp〉, then we distribute

λy over 〈v1, . . . , vp〉 to obtain p copies of λy.v, thus duplicating independently the body

v of its constructor λy:

(λx.u[x1, . . . , xp ←x]) λy.v  β u[x1, . . . , xp ←λy.v]

 ∗ u[x1, . . . , xp �λy.
〈v1, . . . , vp〉[y1, . . . , yp ← y]]

 u{λy1.v1/x1} . . .
{λyp.vp/xp}

This calculus underlines the connection between atomicity and optimal graphs [Lam90],

implements fully-lazy sharing [Bal12] (avoiding duplication of constant parts of an
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expression), while preserving the principal properties of the λ-calculus.

1.2.5 The λµ-calculus and the classical Curry-Howard-Lambek corre-

spondence

Extending the Curry-Howard-Lambek correspondence to classical logic leads to a radi-

cal reunderstanding of the notion of computation, as it was widely believed that classical

logic had no computational meaning. This belief can be illustrated by the drinker’s

principle, due to Smullyan, a tautology that cannot be proved in intuitionistic logic.

Informally, it states that in every (nonempty) bar, there is a customer (the drinker),

such that if he drinks, then everybody drinks. To prove it, we can split the proof in

two cases, either everybody drinks, or there is at least one person who doesn’t drink.

If everybody drinks, then picking anybody makes the formula true, so we are done.

Now if at least one person is not drinking, he can be taken as a witness. Only classical

logic can prove this, since an intuitionistic proof would have to be able to construct a

witness, while classical logic can “change its mind”. This power of classical logic can

be added through different rules, through the law of excluded middle, Peirce’s law, or

in sequent calculus right contractions. Each illustrates a different aspect of classicism.

In the natural presentation of the intuitionistic Curry-Howard isomorphism, the proof

systems allow only one conclusion. When we remove this restriction and allow multiple

conclusions (Γ ` ∆ instead of Γ ` A), one may have the possibility to follow different

paths in the cut-elimination procedure, thus obtaining several distinct proofs without

cuts of the same judgment. This issue is known as Lafont’s critical pair [GTL89]:

Π1
.
.
.

Γ ` ∆
Lwk

Γ, A ` ∆

Π2
.
.
.

Γ′ ` ∆′
Rwk

Γ′ ` ∆′, A
Cut

Γ,Γ′ ` ∆,∆′

Here the cut-elimination can choose between the subproofs Π1 and Π2, thus this proof

can reduce to two distinct normal forms, making cut-elimination non confluent. To

conserve the nice properties of intuitionistic logic, these two proofs should be identified.

However doing so leads to a collapse, and reduces the system to a boolean algebra.

Therefore, no interpretation of classical logic was known until Griffin showed an analogy

between classical logic and Felleisen’s control operator C [Gri90]. In the Curry-Howard

correspondence’s light, the law of excluded middle becomes an operator (a continua-

tion) on the control flow of the program (such as Scheme’s call/cc, or exceptions in
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imperative languages). The two different proofs in Lafont’s example become the proofs

corresponding to two evaluation strategies, namely call-by-name and call-by-value, i.e.:

1. An abstraction is never reduced

2. In an application (Abstraction)Argument, reduce this redex first in call-by-name,

reduce Argument first in call-by-value

3. Otherwise, reduce Argument.

In a categorical view, to get an interpretation of classical logic we need to abandon

cartesian closedness, either by breaking the duality between product and coproduct

(losing the cartesian product), or by dropping currying (losing closedness). Another

possibility is to give up the symmetry between ∧ and ∨ by having a cartesian product

but not a real sum, and we will focus on this approach. Removing the duality between ∧
and ∨ corresponds to choosing to reduce one of the two branches. The choice of a branch

is consistent and enforced by the type system. Types govern the reduction strategy,

and in that way enforce confluence. One way to make this choice is by introducing

polarities for formulas, with reduction depending on the polarities, as in Girard’s LC

[Gir91]. In this system a sequent, to be valid, must have zero or one positive formula

(in the stoup). This idea of selecting a distinguished formula in each sequent is also at

the core of Parigot’s λµ-calculus, the other main pillar of this thesis.

The whole correspondence has been established shortly after by Parigot [Par92], who

developed a Curry-Howard interpretation of a classical natural deduction with multiple

conclusions known as the λµ-calculus. It extends the λ-calculus while keeping the

properties of confluence, preservation of strong normalization, and in a typed setting,

subject reduction and strong normalization. The introduction of classical rules is done

through the µ-abstraction constructor, that deals with new kinds of variables known

as µ-variables (denoted by α, β). In the logical framework, µ-variables are indexing the

formulas among the multiple conclusions.

There is a distinction between unnamed terms t, and named terms of the form n = (t)β,

where t is unnamed, and unnamed terms are inductively defined by the following syntax:

t, u ::= x | λx.t | (t)u | µα.(t)β

A structural rule to reduce applications of µ-abstractions to terms is added to the

calculus:

(µα.n)t→µ µα.n{(w) tα/(w)α}
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An intuitive way to interpret this rule is to see it as recursively passing the argument

t, to each subterm w that has been named with the µ-variable α. From a computa-

tional perspective, the µ constructor abstracts over continuations, and can be seen as

a potentially infinite λ-abstraction. Consider the following reduction:

((µα.n) t1) . . . tp →∗µ µα.n{(((w) t1) . . . tp)α/(w)α}

The idea is to apply an arbitrary number p of arguments to the subterms w named

with α. A µ-abstraction can thus be viewed as an arbitrary number of λ-abstractions.

Similarly, in the application of an unnamed term t to a µ-variable α, the latter can be

seen as an infinite stream of inputs.

A judgment Γ ` A | ∆ consists of a list of formulas Γ annotated with λ-variables, a

distinguished conclusion A typing an unnamed term, and a list ∆ of formulas labeled

with µ-variables. We denote by ¬A the implication A→ ⊥ (where ⊥ denotes falsity).

The type system for the λµ-calculus is given below:

Var
x : A ` A

t : Γ, A ` B | ∆
λ

λx.t : Γ ` A→ B | ∆
t : Γ ` A→ B | ∆ u : Γ′ ` A | ∆′

@
(t)u : Γ,Γ′ ` B | ∆,∆′

t : Γ ` A | ∆
@n

(t)α : Γ ` ⊥ | Aα,∆
(t)β : Γ ` ⊥ | Aα,∆

µ
µα.(t)β : Γ ` A | ∆

Parigot’s λµ-calculus follows a call-by-name strategy, and successfully links classical

constructions to control operators. Felleisen’s C operator is akin to call/cc, a control

operator that captures the current continuation (i.e. the “frozen” programming context

that remains to be executed), making it possible to resume execution later. These con-

tinuations can be seen as transformations of λ-terms following an evaluation strategy,

after applying a continuation passing style (CPS) translation [Plo75].

Example 1.2.1. An example is computing factorial(n), then use the result for an-

other function (e.g. sum, inverse). The other function will be the continuation of the

current program. Concretely, if φ : N→ N is the factorial function φ(n) = n!, its CPS

translation φ∗ is the following function, with the following type, for any A.

φ∗(n, f) = f(φ(n)) φ∗ : N× (N→ A)→ A

The function f is the continuation, and φ∗ will use f as an argument to compute the

result of f(φ(n)).
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Note that if φ has type A→ B, if f has type B → C, then φ∗ has type A→ (B → C)→
C. Replacing C by ⊥ transforms B to its double negation translation ¬¬B. Hence a

CPS translation given a certain evaluation strategy is akin a to double negation trans-

lation (i.e. an embedding of classical formulas into an intuitionistic setting). Passing

continuations as arguments gives the possibility to exit a program, or go/jump to an-

other part of the program. They are interesting for recursive calls: the continuation

can be stored and resumed after the recursive call has returned a certain value.

Many other variants of the λµ-calculus were developed, with the aim of obtaining

good computational properties. One of the most notable is Curien and Herbelin’s λ̄µµ̃

[CH00]. For development in this dissertation, an important variant is Saurin’s Λµ-

calculus [Sau08]. Its aim is to satisfy Böhm’s theorem, which fails in the λµ-calculus

[DP01]. The syntax of the Λµ is as follows:

t, u ::= x | λx.t | (t)u | (t)α | µα.t

It extends the λµ-calculus by adding former “names” (t)α to the syntax, providing more

applicative contexts to separate non-equivalent terms. Intuitively, α represents a place

where subprograms can be stored thanks to the construct (M)α. Binding with µ then

retrieves what has been stored by the variable α. Remarking that the µ constructor

abstracts over continuations, he observes that it can be seen as a potentially “infinite”

stream of λ-abstractions. He then developed an extension including streams in the

syntax [GS10], the ΛµS-calculus, developed in the next chapter.

Once the Curry-Howard correspondence had been established for classical logic, work

started on the categorical aspect of control operators. From a categorical perspective,

Lafont’s critical pair corresponds to Joyal’s theorem, which states that adding the re-

quirement of a bifunctorial disjunction to a categorical model of intuitionistic logic (a

CCC) is equivalent to the category being a boolean algebra. Building most notably

on the works [Ong96, HS97], the solution was found by Selinger [Sel01], who found

a categorical correspondence between the λµ-calculus and cartesian closed categories

with a premonoidal structure. The categorical model in fact splits into two equiva-

lences, the control categories, whose internal language corresponds to the call-by-name

evaluation strategy, and the cocontrol categories whose internal language corresponds

to the call-by-value evaluation strategy. This correspondence sheds a new light on the

computational content of classical logic, since it also gave a syntactic duality, as there

are mutually inverse translations between the two strategies, which preserve the oper-

ational semantics. While a control category has a bifunctorial product, its sum should

not be interpreted as a bifunctor, but rather as a functor giving a premonoidal struc-
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ture, consistently with the consequence of the choice of evaluation strategy. Conversely,

in cocontrol categories the product is not a real product (i.e. not a bifunctor). Of note

is that categorical semantics relies on a CPS translation, whose categorical account is

a Yoneda embedding.

1.3 Motivation

In this section we address the main motivation for our work on the atomic λµ-calculus.

The broad idea is to give greater control over duplication and deletion of terms, and

thus efficiency of computation. It comes from explicit substitution calculi, which al-

ready enjoy a rich theory, the main concept being that of sharing. Informally, the idea

behind sharing is that a resource used by multiple clients can be shared between them

instead of being duplicated then given to each client. Sharing acts like a let opera-

tor/construct, similar to memoization for big step evaluation, and to call-by-need for

small-step evaluation. For example, instead of computing

factorial(40) * factorial(40) + 8 * factorial(40)

which duplicates a heavy computation, we can share factorial(40) as follows:

let x = factorial(40) in x*x + 8*x

which makes it possible to avoid calculating factorial(40) several times, by making

it a shared resource instead. The two programs are extensionally the same since they

return the same result, but their operational semantics should be different. Various

approaches exist to model formalisms with better control over duplication and dele-

tion, such as λ-calculi with explicit substitutions [ACCL91]. A notable extension is

Lengrand’s λlxr [Len06], a linear calculus with explicit substitutions, weakening and

contraction, satisfying preservation of strong normalization and having constructors

for duplication and deletion of explicit substitutions. It corresponds to a fragment of

proof nets for intuitionistic linear logic. A framework including Lengrand’s calculus

is the prismoid of resources [KR09], relating several calculi in a unified presentation,

each choosing the sorts of resources (weakening, contraction, substitution) to control.

Another calculus is the linear substitution calculus [Acc12], a different approach to ex-

plicit substitutions which is able to capture the workings of several abstract machines

[ABM14], in particular modeling different evaluation strategies.

The atomic λ-calculus, which enjoys a natural form of sharing, has been studied with
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the same motives. It is an explicit sharing calculus in the sense that while it has many

similarities with explicit substitution calculi, the reduction rules are very different.

In particular, lifting rules are inverted. It satisfies fully-lazy sharing, first described

by Wadsworth, in which the “constant” parts (the maximal free subexpressions) of a

program unaffected by the instantiation of the function are not duplicated (they are

shared instead), thus providing an efficient model of computation. This corresponds

to the maximal level of sharing that can be naturally maintained during reduction in

a term calculus extended with only sharings.

A natural way to model and implement sharing is via graphs. Whereas a λ-term

is syntactically a tree, common subterms may become shared straightforwardly by

representing the term instead as a directed acyclic graph (DAG) [Wad71].

1.3.1 Sharing graphs

Sharing is strongly related to optimality, introduced by Lévy [Lév80], and Lamping’s

optimal graphs [Lam90] implement Lévy’s optimal reduction. A reduction strategy

is optimal when all the elements in the same family of redexes are reduced in one

step, and when there are no unnecessary steps of work created. Viewing terms as

graphs, Lamping’s approach is to share partial terms, i.e. terms with a hole. His graphs

introduce not only sharing but also unsharing nodes: the fan-in gathers the pointers

to a context, whereas the fan-out (unsharing) collects the possible ways to fill a hole.

This allows sharing of subexpressions of a term, and atomic duplications, similarly

to the atomic λ-calculus. Lamping showed that it was impossible for any reduction

strategy to completely avoid unnecessary duplications, however sharing is a way to

manage those duplications (by representing them as a single entity). Optimal graphs

relate to encodings of intuitionistic logic into linear logic. A prototype interpreter has

been implemented by Asperti [AG98] to show the workability of optimal graphs.

1.3.2 Continuations

The λµ-calculus links classical operators to control operators, which give the possibil-

ity to manipulate the execution environment (e.g. by capturing partial terms). For

instance, one can implement exceptions with continuations. In practice, programming

languages often use side-effects (i.e. changing a certain state or interacting with the out-

side world in addition to returning a value) such as exceptions. From the λµ-calculus,

an interesting direction would be an extension modeling more general effects. A math-

ematical approach to side-effects has been studied through algebraic effects [FS14].
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1.4 Thesis outline

In this section, we first give the general overview of this thesis, what motivates our

work and describe the issues that influenced our technical choices. We then detail the

content of each chapter.

The main contribution of this thesis is the atomic λµ-calculus, which extends the

Curry-Howard correspondence between deep inference formalisms and term calculi to

a classical setting. The result is a direct extension of the λµ-calculus and of the atomic

λ-calculus, giving an explicit sharing λ-calculus with control operators. Similarly to

the atomic λ-calculus, we can give a deep inference typing system, corresponding to

term duplication on individual constructors, in the open deduction formalism. To

obtain the syntax and rules, we applied a technique similar to that of the atomic

λ-calculus, giving first a λµ-calculus with explicit sharings, then a distributor for the

µ-abstraction. One first difficulty is linked to the syntax and to the main reduction rule

of the λµ-calculus. The λµ-calculus distinguishes two different kinds of terms, which

complicates the syntax with sharings. Furthermore, a β-step can be easily expressed

in terms of sharing or explicit substitutions [x := t], whereas expressing a µ-reduction

with [(w)α := (w)tα] would be problematic, since we want to modify all subterms of

the form (w)α. For these reasons we work on a variant, the ΛµS-calculus [GS10], with

one kind of term and considering a new stream application compatible with sharings.

Another challenge appears when defining the type system in open deduction. The deep

inference methodology allows us to identify object (connectives) and meta (commas

in sequents, branching derivations) levels, and classical logic requires working with

multiple conclusions and distinguishing one main conclusion, thus introducing another

meta-level (corresponding to a meta disjunction ∨). Therefore we need to find a suitable

formulation to work with classical natural deduction, allowing a clear computational

reading, while keeping everything at the same level, in the simplest way (introducing

as few new rules as possible, keeping proofs as short as possible). We show that

our resulting calculus, the atomic λµ-calculus, satisfies confluence, subject reduction

in a typed setting, and preservation of strong normalization (PSN). The proof for

PSN, the main theorem for our calculus, is divided into two parts, with a intermediate

weakening calculus that helps isolate the hard part of the proof. This part requires

finding a reduction strategy which provides an infinite path for a term whenever there

exists one, while keeping infinite reductions outside of weakenings, thus interpreted to

infinite paths in the ΛµS-calculus. Our approach to this strategy is different from that

in [GHP13], relying on the property the weakening calculus preserves any β, µ infinite

path. Another necessary lemma to show PSN is the strong normalization of sharing
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reductions. We present a new proof for this lemma, following an approach that matches

more closely the idea of sharing. As for the atomic λ-calculus, we have full laziness.

In Chapter 2 we define our atomic λµ-calculus ΛµSa, giving a correspondence with

classical open deduction. Choosing to extend ΛµS instead of other λµ-calculi originates

from several difficulties, related to the syntax and the typing system, that we describe in

this chapter. We extend the syntax of the atomic λ-calculus and the ΛµS-calculus with

sharings (respectively distributors) of streams S (respectively µ-abstractions µα.t), and

a set of rules symmetric to the intuitionistic case appearing with the µ-reduction. We

then describe the corresponding typing system in natural deduction (in sequent-style)

and the same rules in open deduction.

Chapter 3 gives several properties of the atomic λµ-calculus, showing that reductions

and translations are well-behaved with respect to the ΛµS-calculus. These properties

will then be used to prove PSN.

Chapter 4 introduces an auxiliary calculus, the weakening calculus, a bridge between

the ΛµS-calculus and the atomic calculus that helps prove PSN for ΛµSa with respect to

the ΛµS-calculus. A difficulty in the proof of PSN appears with reductions happening

in nullary sharings (or weakenings), thus simulating a reduction step in ΛµSa with

no reduction step in ΛµS. This leads to constructing the weakening calculus. From

there, we show PSN for the weakening calculus with respect to the ΛµS-calculus by

using a perpetual or exhaustive strategy, which guarantees to find a infinite path in

the ΛµS-calculus from an infinite path in the weakening calculus. This strategy differs

from the perpetual strategy in the atomic λ-calculus, adapting to the properties of the

weakening calculus.

Chapter 5 shows that sharing reductions are strongly normalizing. The idea for this

proof is new, and follows a graphical intuition behind terms. After a sharing reduction,

the number of copies of subterms can decrease, so can the lengths of paths from the root

to closures. We thus build a strictly decreasing measure based on these parameters.

Chapter 6 states and shows PSN for the ΛµSa-calculus with respect to the ΛµS-

calculus, i.e. the atomic translation of a strongly normalizing ΛµS-term is strongly

normalizing.

Chapter 7 focuses on the full-laziness of our calculus. We prove that it is possible to

share the maximal constants parts of a term, eventually evaluating them only once,

therefore limiting duplications to the remaining parts of the term.
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Chapter 2

The atomic lambda-mu-calculus

In this chapter we present the steps to build the atomic λµ-calculus. Our aim is to

obtain a calculus with explicit sharing, enjoying the same properties as the atomic

λ-calculus and the λµ-calculus: confluence, full laziness, preservation of strong normal-

ization, and in a typed setting, subject reduction.

We will first try to naively extend Parigot’s λµ-calculus to an atomic setting, and

see that this does not work well with µ-reduction. Adding explicit sharings to λµ-

terms is straightforward: multiple occurrences of variables are given fresh names and

become bound to a common variable inside a sharing. For example, µβ.(µα.(x)β)β

becomes µβ.(µα.(x)β1)β2[β1, β2 ← β]. In an atomic setting, while β-reduction trans-

lation is straightforward, µ-reduction cannot easily be expressed with sharings. The

β-reduction (λx.t)u −→ t{u/x} is interpreted as (λx.t[x1, . . . , xn ← x])u and reduces

to t[x1, . . . , xn ← u]. For µ-reduction, take the following example:

(µα.(µβ.(x)α)α)t→µ µα.(µβ.(x) t α)t α

(µα.(µβ.(x)α1)α2[α1, α2 ← α])t→µ ???

The µ-reduction rule (µγ.t)u −→µ µγ.t{(w)uγ/(w)γ} modifies the structure of the

terms of the form (w)γ by pattern-matching on the application to γ, which makes

it difficult to express it in terms of explicit substitutions or sharings. In general,

we would need something of the form t[(w1)γ1, . . . , (wn)γn ← (w)uγ], shifting away

from the structure of sharings or explicit substitutions and making the syntax more

complicated.

We need a slightly different approach, where our syntax should be as close as possible

to that of the atomic λ-calculus. Intuitively, we would like the previous reduction to
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look like:

(µα.(µβ.(x)α1)α2[α1, α2 ← α])t→µ (µα.(µβ.(x)α1)α2[α1, α2 ← (t)α]) (?)

but the right term is incorrect, since application is left-associative.

This can be fixed by introducing a new, right-associative, stream application ◦. Such

a variant has been studied by Saurin and Gaboardi [GS10]. In this calculus, there are

two applications, the usual one, and the stream application. A stream is similar to a

list, and the µ-reduction rule becomes (µα.t)u −→µ µβ.t{u ◦ β/α}, where instead of

successively applying terms annotated by α to u, we add u to a stream of terms.

In this case, the previous example becomes:

(µα.(µβ.(x)α)α)t→µ µα.(µβ.(x) (t ◦ α))(t ◦ α)

(µα.(µβ.(x)α1)α2[α1, α2 ← α])t→µ (µα.(µβ.(x)α1)α2[α1, α2 ← t ◦ α])

In the general case, (µα.t[α1, . . . , αn ← α])u reduces to µα.t[α1, . . . , αn ← u ◦ α].

We thus need to extend our syntax with new stream terms:

S, T ::= α | t ◦ S

and µ-abstractions of the form µα.(t)S.

The λµ-calculus already distinguishes terms from names, and extending it with sharings

adds streams, now giving three different expressions, thus burdening the study of the

calculus. Therefore we can consider Saurin’s variant, the Λµ-calculus, which includes

names in the term syntax, then extend it with streams to get the ΛµS-calculus:

t, u ::= x | λx.t | (t)u | (t)S | µα.t

The syntax of the ΛµS-calculus with sharings can then be naturally extended to an

atomic setting, giving the ΛµSa-calculus.

To deal with µ-reductions, we can now introduce a µ-distributor analogous to the

λ-distributor for λ-abstractions. Reduction rules involving µ are then close to those

involving β. In particular, in a µ-abstraction, the distributor works similarly and allows

us to duplicate the µ-constructor independently from the body of the abstraction.

The next step is to construct a suitable type system in open deduction. Working in

sequent-style, we can define a type system for ΛµSa-terms with multiple conclusions
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(as in Parigot’s classical natural deduction). However, linking atomic terms to their

sequent-style proof is not very intuitive, especially if we look at sharing and distributor

rules. Those two rules can be naturally described in open deduction, which corresponds

via Curry-Howard to the atomic λ-calculus, and therefore is the best choice to represent

our typed terms.

We can then attempt to build a multi-conclusion open deduction system. In classical

natural deduction, sequents are of the form:

Γ ` A | ∆

with at most one main conclusion, distinguished from the others by a |meta-connective,

corresponding to a special disjunction.

In open deduction, we also need a way to specify the main conclusion on which to apply

an inference rule. We thus first introduce the | connective in open deduction, then add

new switch rules:
(A | ∆) ∧ (B | ∆′)
(A ∧B) | ∆ ∨∆′

s1
A→ (B | ∆)

(A→ B) | ∆
s2

to retrieve our main conclusion.

There are several reasons why this system is not convenient. First, in proofs for atomic

λ-terms, premises are conjunctive formulas of the form Γ ∧ Γ′ (indexing λ-variables),

and conclusions are formulas of the form A→ B (indexing a term). Ideally our proofs

should follow a similar structure, but multiple conclusions with disjunctions prevent

this. Another problem is that rules λ, @ and @n require the use of switch rules before

being applied to the main conclusions, which leads to very long proofs. Last, and this

is the main reason, reducing bureaucracy is the very essence of deep inference and open

deduction, and multiple conclusions forces to introduce another meta-level with the |
connective.

Consider for instance the classical formula ¬¬A → A. In a system with multiple
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conclusions, the proof would look like this:

(¬A | Aα) ∧ (> | ⊥φ)

¬¬Ay →

¬¬Ay ∧

(¬A | Aα)

Ax →

Ax ∧ (¬A | Aα)

Ax ∧ ¬A
⊥ @n | Aα

s1

⊥ | Aα,⊥δ
⊥ | Aα

µ

w

λ

(Ax → ⊥) | Aα
s2

¬¬Ay ∧ (¬A | Aα)

¬¬Ay ∧ ¬A
⊥ @ | Aα

s1

∧ (> | ⊥φ)

(⊥ | Aα) ∧ (> | ⊥φ)

⊥ | Aα,⊥φ
A | ⊥φ

µ

s1

λ

¬¬Ay → (A | ⊥φ)

(¬¬Ay → A) | ⊥φ
s2

Multiple conclusions (or disjunctions) appear with free µ-variables, and a non-main

conclusion Cγ becomes main when γ is bound by the abstraction µγ.

To simplify the type system, a possibility is not to display those non-main conclusions

until they get bound by a µ-abstraction. This way our system becomes more economical

by avoiding the superfluous switch rules. The proof of ¬¬A→ A thus becomes:

>φ

¬¬Ay →

¬¬Ay

¬¬Ay ∧

¬A

Ax →
Ax ∧ ¬A

Ax ∧ ¬A
⊥ @n ∨ ⊥δ

µ

⊥δ

λ

¬¬Ay ∧ ¬A
⊥ @

∧ >φ

⊥ ∧>φ
⊥ @n

∨Aα

µ

Aα

λ

¬¬Ay → A
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As a consequence, µ-abstraction becomes very similar to λ-abstraction:

λx.t ≡
Γ

Ax →
Γ ∧Ax

t

=⇒

C

λ

µα.t ≡

Γ
Γ ∧ ¬A

t

=⇒

⊥
∨Aα

µ

A

In a λ-abstraction the part Ax → remains untouched during the derivation, and like-

wise, in a µ-abstraction the part ∨Aα does not interact with the rest of the proof, thus

we can ignore this part until there is a µ-abstraction on α.

This chapter starts by presenting the basic ΛµS−a -calculus with sharings, which leads

to the atomic ΛµSa-calculus. We detail the syntax of ΛµSa, its reduction rules, and

typing system.

2.1 The basic ΛµS-calculus: ΛµS−a

We now work with an extension of Saurin’s Λµ-calculus, the ΛµS-calculus with streams.

The syntax of ΛµS is defined as follows:

Definition 2.1.1. [Syntax of ΛµS]

Terms T,U ::= x | λx.T | (T )U | (T )S | µα.T
Streams S ::= α | T ◦ S

The β and µ-reduction rules can be applied to terms or streams, and therefore we

obtain four rules:

Definition 2.1.2. [Reduction rules for ΛµS]

1. (λx.T )U −→βt T{U/x}

2. (λx.T )(U ◦ S) −→βs (T{U/x})S

3. (µβ.T )U −→µt µβ.T{(U ◦ β)/β}

4. (µβ.T )S −→µs T{S/β}

Remark 2.1.3. We often use −→β,µ to say that we refer to one of these rules.

30



We now want to extend the ΛµS-calculus with explicit sharing in a way that captures

the reduction rules above. The idea of sharing is to postpone the duplication of a term

as much as possible by using a single shared representation of this term. All the copies

of this term can then be evaluated simultaneously before being duplicated. In this

section we present the syntax of the basic calculus ΛµS−a with explicit sharings, and

how to translate ΛµS terms into ΛµS−a .

2.1.1 Syntax of ΛµS−a

We now define the ΛµS−a -calculus, extending the ΛµS calculus with sharings [ ~xp ← t]

for terms (respectively [~γp ← S] for streams), where ~xp denotes x1, . . . , xp (respectively

~γp denotes γ1, . . . , γp). The syntax of ΛµS−a is defined as follows:

Definition 2.1.4. [Syntax of ΛµS−a ]

Terms t, u ::= x | λx.t | (t)u | (t)S | µα.t | u[φ]

Streams S, T ::= α | t ◦ S | S[φ]

Closures [φ], [ψ] ::= [ ~xp ← t] | [ ~γp ← S]

The following conditions must hold:

• in [ ~xp ← t] and [~γp ← S] the variables xp, γp are binding,

• in λx.t (respectively µα.t) the variable x (respectively α) binds in t, and in u[φ]

(respectively T [φ]), the binding variables of [φ] bind in u (respectively T ),

• a variable occurs exactly once.

To reduce the number of cases in definitions and proofs, we will introduce new notations.

These notations are for ΛµS−a -terms t, but we use the same conventions for ΛµS-terms

T .

Notation 1. • χ denotes λ or µ-variables,

• u∗ denotes terms and streams,

• @(t, u∗) denotes applications (t)u∗ and t ◦ S,

• Ax.t denotes abstractions λx.t and µα.t{α/x},

• [Φ] denotes a sequence of closures [φ1] . . . [φn].
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These notations will allow us to treat terms and streams uniformly where required, as

well as our four applications and our two abstractions.

2.1.2 Translation ΛµS
L−M−→ ΛµS−a

We translate the ΛµS-terms into linear terms in ΛµS−a . All occurrences x1, . . . , xp

(respectively α1, . . . , αp) of a same variable x (respectively α) are collected with a

sharing [x1, . . . , xp ← x] (respectively [α1, . . . , αp ← α]). A term t px (respectively

t pα) corresponds to the term t where the p occurrences of x (respectively α) have

been replaced with x1, . . . , xp (respectively α1, . . . , αp). We first define the auxiliary

translation L−M′, which collects occurrences of a bound variable x (respectively α) with

a sharing [x1, . . . , xn ← x] (respectively [α1, . . . , αn ← α]):

Definition 2.1.5. [Translation L−M′]

• L x M′ = x

• L α M′ = α

• L @(T,U∗) M′ = @(L T M′, L U∗ M′)

• LAx.T M′ =

{
Ax.L T M′ if |T |x = 1

Ax.(L T p
x M′[ ~xp ← x]) if |T |x = p 6= 1

We can now define the translation L−M from ΛµS-terms to ΛµS−a -terms, which also

linearizes free variables:

Definition 2.1.6. [Translation ΛµS
L−M−→ ΛµS−a ] Let x1, . . . , xp, α1, . . . , αk be the dis-

tinct variables occurring in t, such that |T |xi , |T |αi > 1. Then:

L T M =L T
l1
x1
. . .

lp
xp

lp+1

α1
. . .

lp+k
αk

M′[ ~(x1)l1 ← x1] . . . [ ~(xp)lp ← xp]

[ ~(α1)lp+1
← α1] . . . [ ~(αk)lp+k ← αk]

2.2 The atomic Λµ-calculus: ΛµSa

We now extend our basic calculus with the distributor construct. The idea is that

during reductions, we want to be able to duplicate smaller portions of a term instead
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of copying the whole term. In particular, when duplicating abstractions, we would

like to separate the body of the abstraction and duplicate it independently from its

constructor. To do that we use the distributor construct [. . . � ·], which contains a

tuple of terms corresponding to the copies of the body of the abstraction to duplicate.

From a term u[x1, . . . , xp ← µα.v], we want to eventually replace each xi with µα.v,

and to do that we first create p copies v1, . . . , vp of v into a tuple 〈v1, . . . , vp〉 while

freezing the constructor µα. Then we perform the substitution by distributing µα over

the copies of v to obtain p copies of µα.v.

(λx.u[x1, . . . , xp ←x]) µα.v  β u[x1, . . . , xp ←µα.v]

 ∗ u[x1, . . . , xp �µα.〈v1, . . . , vp〉[α1, . . . , αp ← α]]

 u{(µα1.v1)/x1} . . . {(µαp.vp)/xp}

2.2.1 Syntax of ΛµSa

The atomic λµ-calculus ΛµSa extends the basic calculus ΛµS−a as follows:

Definition 2.2.1. [Syntax of ΛµSa]

Closures [φ], [ψ] ::= · · · | [ ~xq � λy.tq] | [ ~xq � µβ.tq]

λ-tuples tp ::= 〈 t1, . . . , tp 〉 | tp[φ]

The conditions of ΛµS−a apply, plus the following:

• In λx.tp (respectively µα.tp) the variable x (respectively α) binds in tp.

We denote by T the set of terms, by S the set of streams, and by Tp the set of p-terms.

An expression u∗ ∈ ΛµSa can be a term in T, a stream in S, or a p-term in Tp. A

variable χ can be a λ-variable in T, or a µ-variable in S. Let τ ∈ T∪S, a 0-ary sharing

[← τ ] (resp. a 0-ary distributor [� Ay.t0]) is called a weakening.

Definition 2.2.2. Let u∗ ∈ ΛµSa. We define by induction on u∗ the set E(u∗) of

subexpressions of u∗:

1. E(x) = {x}

2. E(Ax.t) = {Ax.t} ∪ E(t)

3. E(@(t, t′∗)) = {@(t, t′∗)} ∪ E(t) ∪ E(t′∗)
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4. E(〈 t1, . . . , tp 〉) = E(t1) ∪ · · · ∪ E(tp)

5. E(u∗[φ]) = {u∗[φ]} ∪ E(u∗) ∪ E(φ)

6. E( ~χq ← χ) = E(χ)

7. E( ~xq � Ax.tp) = E(tp)

2.2.2 Denotation ΛµSa
J−K−→ ΛµS

We now define the translation from ΛµSa back to ΛµS. Terms are translated into

terms by the denotation (or interpretation) function J− K, whereas closures become

substitutions which are translated by the auxiliary function ⦃− ⦄, which we write in

place of a closure’s usual square brackets [ ]. We write {. . . /xi}i≤p whenever we apply

multiple substitutions over each xi. Let τ be a term or a stream in T ∪ S, and χi be

variables in T ∪ S. The following translation (or denotation) maps ΛµSa to ΛµS:

Definition 2.2.3. [Denotation ΛµSa
J−K−→ ΛµS]

• J x K = x

• J α K = α

• JAx.t K = Ax.J t K

• J @(t, τ) K = @(J t K, J τ K)

• J u∗[φ] K = J u∗ K⦃ φ ⦄

• ⦃ ~χp ← τ ⦄ = {J τ K/χi}i≤p

• ⦃ ~xp � Ay.〈 t1, . . . , tp 〉[Φ] ⦄ = {(Ay.J ti K⦃ Φ ⦄)/xi}i≤p

• ⦃ Φ ⦄ = ⦃ φ1 ⦄ . . . ⦃ φn ⦄ where [Φ] = [φ1] . . . [φn]
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2.2.3 Reduction rules

We can represent atomic terms as follows:

χ

χ

A
t x

Ax.t

@

t τ

@(t, τ)

u

τ

χ1
χp

u[~χi ← τ ]

u

A A

tp

x1 xp

y

u[~xi � Ay.tp]

Figure 2-1: Graphical representation of atomic terms

The main innovation here comes from the atomic duplication rules: they allow us to

copy smaller parts of a term instead of duplicating the whole term. Graphically, instead

of duplicating an application @(t, τ), we duplicate t and τ separately:

u

@

t τ

χ1
χp

−→s

u{@(yi, χ
′
i)/χi}

@

@

t τ

y1
yp

χ′
1

χ′
p

The distributor rule enables the duplication of an abstraction by separating the abstrac-

tion constructor from the body. Graphically, instead of duplicating Ax.t, we create a

tuple 〈 y1, . . . , yp 〉[~yi ← t], then duplicate t separately (obtaining a tuple 〈 t1, . . . , tp 〉),
and finally distribute the abstraction constructors over the ti:

u

A
t

x1 xp

y

−→s

u

A A

t

x1 xp

y

y1 yp
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u

A A

t1 tp

x1 xp

y

−→s

u

A A

t1 tp
y1 yp

x1 xp

where the thicker arrows represent a bundle of arrows.

The lifting rules push closures outside of the scope of a term, thus allowing us to

postpone the duplication of a term, as in lazy reduction strategies. As a result (shown

in Chapter 7), we get full laziness, i.e. a lazy strategy that can also duplicate parts of

a term instead of copying the whole term.

Example 2.2.4. Let T = λa.(a)a and U = µγ.((λx.(x)x)y)γ.

A possible step for (T )U is to reduce to (U)U , duplicating U twice. Then we would

need to eliminate redexes of U twice, which is something we want to avoid.

In the basic calculus,

t = L T M = λa.(a1)a2[a1, a2 ← a]

and

u = L U M = µγ.((λx.(x1)x2)y[x1, x2 ← x])γ

The reduction becomes:

(λa.(a1)a2[a1, a2 ← a]) u

 
β

(a1)a2[a1, a2 ← u]

where u is not duplicated but shared.

A possible step is then to β-reduce u:

(a1)a2[a1, a2 ← µγ.((λx.(x1)x2[x1, x2 ← x])y︸ ︷︷ ︸ )γ]

 
β

(a1)a2[a1, a2 ← µγ.((x1)x2[x1, x2 ← y])γ]
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Then we can lift the sharing [x1, x2 ← y] outside:

(a1)a2[a1, a2 ← µγ.((x1)x2[x1, x2 ← y])γ]

 ∗
s

(a1)a2[a1, a2 ← µγ.((x1)x2)γ][x1, x2 ← y]

The main step is now to duplicate µγ.((x1)x2)γ.

(a1)a2[a1, a2 ← µγ.((x1)x2)γ]

 
s

(a1)a2[a1, a2 � µγ.〈 v1, v2 〉[v1, v2 ← ((x1)x2)γ]]

This step freezes the µ-distributor, which is now independent from the rest of the term,

and creates a tuple 〈v1, v2 〉, each vi being shared with the term ((x1)x2)γ to duplicate.

Instead of duplicating the application ((x1)x2)γ, we can break it into duplications of

smaller subexpressions x1, x2 and γ.

(a1)a2[a1, a2 � µγ.〈 v1, v2 〉[v1, v2 ← ((x1)x2)γ]]

 
s

(a1)a2[a1, a2 � µγ.〈 (v1)γ1, (v2)γ2 〉[v1, v2 ← (x1)x2][γ1, γ2 ← γ]]

 
s

(a1)a2[a1, a2 � µγ.〈 (v1)w1γ1, (v2)w2γ2 〉[v1, v2 ← x1][w1, w2 ← x2][γ1, γ2 ← γ]]

Since x1 and x2 are not bound, we can push sharings [v1, v2 ← x1] and [w1, w2 ← x2]

outside of the scope of the distributor, to postpone duplications of x1 and x2 until

necessary. To do that, we first apply an exchange rule, then push sharings outside:

(a1)a2[a1, a2 � µγ.〈 (v1)w1γ1, (v2)w2γ2 〉[v1, v2 ← x1] [w1, w2 ← x2][γ1, γ2 ← γ]︸ ︷︷ ︸]
 
s

(a1)a2[a1, a2 � µγ.〈 (v1)w1γ1, (v2)w2γ2 〉[v1, v2 ← x1][γ1, γ2 ← γ][w1, w2 ← x2]]
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 ∗
s

(a1)a2[a1, a2 � µγ.〈 (v1)w1γ1, (v2)w2γ2 〉[γ1, γ2 ← γ]][v1, v2 ← x1][w1, w2 ← x2]

Finally, we distribute the µ-abstraction to each tuple:

(a1)a2[a1, a2 � µγ.〈 (v1)w1γ1, (v2)w2γ2 〉[γ1, γ2 ← γ]][v1, v2 ← x1][w1, w2 ← x2]

 
s

(((µγ1.(v1)w1γ1)µγ2.(v2)w2γ2)[γ1, γ2 ← γ])[v1, v2 ← x1][w1, w2 ← x2]

The example above shows that applying duplication rules require additional rules such

as lifting and congruence rules. We also need compounding and unary sharing rules.

Let χi, χ
′
j , χ
′′
k be variables in T ∪ S, and τ ∈ T ∪ S be a term or a stream. Recall that

we denote by @(t, τ) applications (t)τ, t ◦ τ and by Ax.t abstractions λx.t, µα.t{α/x}.
Wherever there are unary sharings, we apply the unary rule instead of the others. To

simplify, in many cases we write [Φ] −→s {. . .}[Ψ] instead of u∗[Φ] −→s u
∗{. . .}[Ψ]. All

reduction rules are shown below:

Congruence rule

1. [φ][ψ] ∼ [ψ][φ] when [ψ] does not bind in [φ]

Lifting rules

Forbidden for p = 1.

1. Ax.(u[φ]) −→s (Ax.u)[φ] if x ∈ FV (u)

2. @(u[φ], τ) −→s @(u, τ)[φ]

3. [ ~χp ← τ [φ]] −→s [ ~χp ← τ ][φ]

4. [ ~xp � Ay.tp[φ]] −→s [ ~xp � Ay.tp][φ] if y ∈ FV (tp)

Compounding rules

Forbidden for p = 1, and for m = n = 0.

1. [ ~χp ← χ][ ~χ′m, χ, ~χ
′′
n ← τ ] −→s [ ~χ′m, ~χp, ~χ

′′
n ← τ ]
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Unary sharing rules

1. [χ← τ ] −→s {τ/χ}

Duplication rules

Forbidden for p = 1.

1. [ ~χp ← @(v, τ)] −→s {@(χ′i, χ
′′
i )/χi}[ ~χ′p ← v][ ~χ′′p ← τ ]

2. [ ~xp ← Ax.t] −→s [ ~xp � Ax.〈 ~yp 〉[~yp ← t]]

3. [ ~xp � Ay.〈 ~tp 〉[~zq ← y]] −→s { Ayi.ti[~zlii ← yi] /xi}
and {z1

i , . . . , z
li
i } = {~zq} ∩ FV (ti)

µ, β rules

1. (λx.t)u −→βt t{u/x}

2. (λx.t)(u ◦ S) −→βs (t{u/x})S

3. (µβ.t)u −→µt µβ.t{(u ◦ β)/β}

4. (µβ.t)S −→µs t{S/β}

Remark 2.2.5. We often use −→β,µ to say that we refer to one of these rules.
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2.3 Typing terms in the sequent calculus

We present two simple type systems for ΛµSa, one in natural deduction (sequent-

style), and another in open deduction. In these systems, we have conjunctive types

A1 ∧ · · · ∧ Ap corresponding to tuples tp, and negated types ¬A corresponding to µ-

variables and streams.

The Λµ-calculus was introduced as an extension of the λµ-calculus that would recover

Böhm’s separation theorem, which states that for two distinct normal forms t, u, there

is a context C[−] such that C[t] and C[u] reduce to two chosen different terms. While our

syntax extends Saurin’s Λµ-calculus, our type system is more limited. Terms under a

µ-abstraction are typed with ⊥, thus terms needed to prove separation are not typable

in our system, which is closer to Parigot’s type system.

The sequent system extends classical natural deduction. It features explicit contrac-

tions corresponding to all linear occurrences of a ΛµSa-expression, and closures are

constructed with cuts. A term can be typed with ⊥, an atom a, or an implication

A→ B.

2.3.1 Atomic Λµ-abstractions

t : Γ, Ax ` B | ∆
λ

λx.t : Γ ` A→ B | ∆
t : Γ ` ⊥ | Aα,∆

µ
µα.t : Γ ` A | ∆

2.3.2 Atomic Λµ-applications

t : Γ ` A→ B | ∆ u : Γ′ ` A | ∆′
@

(t)u : Γ,Γ′ ` B | ∆,∆′

t : Γ ` B | ∆ S : Γ′ ` ¬B | ∆′
@n

(t)S : Γ,Γ′ ` ⊥ | ∆,∆′

t : Γ ` B | ∆ S : Γ′ ` ¬A | ∆′ ◦
(t ◦ S) : Γ,Γ′ ` ¬(B → A) | ∆,∆′

2.3.3 Atomic Λµ-variables

Var
x : Ax ` A µ-Var

α : ` ¬A | Aα
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2.3.4 Atomic Λµ-tuples

t1 : Γ1 ` A1 | ∆1 . . . tk : Γk ` Ak | ∆k 〈 〉k〈 t1, . . . , tk 〉 : Γ1, . . . ,Γk ` A1 ∧ · · · ∧Ak | ∆1, . . .∆k

2.3.5 Atomic Λµ-sharings

t∗ : Γ, Ax1 , . . . , Axq ` B | ∆ u : Γ′ ` A | ∆′ ←
t∗[x1, . . . , xq ← u] : Γ,Γ′ ` B | ∆,∆′

t∗ : Γ ` B | Aα1 , . . . , Aαq ,∆ S : Γ′ ` ¬A | ∆′
←′

t∗[α1, . . . , αq ← S] : Γ,Γ′ ` B | ∆,∆′

2.3.6 Atomic Λµ-distributors

t∗ : Γ, (A→ B1)x1 , . . . , (A→ Bq)
xq ` C | ∆ uq : Γ′, A ` B1 ∧ · · · ∧Bq | ∆′ �

t∗[x1, . . . , xq � λy.uq] : Γ,Γ′ ` C | ∆,∆′

t∗ : Γ, Ax1 , . . . , Axq ` B | ∆ uq : Γ′ ` ⊥ ∧ · · · ∧ ⊥︸ ︷︷ ︸
q

| Aα,∆′

�′
t∗[x1, . . . , xq � µα.uq] : Γ,Γ′ ` B | ∆,∆′

2.4 Typing terms in Open Deduction

In the previous section, we considered a natural deduction system to type atomic terms.

In explicit substitution calculi, typing is also done via variants of natural deduction

systems, and in this setting, scope (closure under an abstraction), (co-)contraction

and weakening are implicit. Also, constructions such as sharings involve cuts, making

reduction rules (cut-elimination) unnatural. Defining corresponding reduction rules is

one of the first steps to define the calculus, and for each additional rule, one needs to

check that soundness is preserved. Furthermore, there is usually no guidance on the

best way to define these rules. However in open deduction, they are made structurally

explicit, giving constraints on reduction rules to ensure soundness, and making sharing

construction immediate. The correspondence between open deduction and the syntax is

then natural. From open deduction and its explicit (co-)contraction and scope, we get

the medial rules, which are at the core of the atomic ΛµS-calculus. One can note that it

is possible to embed an explicit substitution calculus in open deduction, therefore this

proof system could give a guidance to construct a calculus with explicit substitutions.

However, it is uncertain whether following such a method is efficient.
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The open deduction formalism allows us to write two dimensional proofs: horizontal

(with connectives) corresponding categorically to the functoriality of connectives, and

vertical composition of derivations corresponding to categorical composition.

Derivations in open deduction are constructed as follows:

Definition 2.4.1.

A=⇒

C

::= A | A
C

r |
A1=⇒

C1

∧
A2=⇒

C2

|
A1=⇒

C1

∨
A2=⇒
C2

|
C1

=
⇒

A1

→
A2=⇒

C2

|

A=⇒

B
B=⇒

C

Arrows indicate a derivation that goes from the premise formula A to the conclusion

formula C. After composing derivations, we obtain a derivation from the top formula to

the bottom formula. In particular, an implication gives a derivation from A = C1 → A2

to C = A1 → C2.

We write A
C

r when applying an inference rule r, and double inferences
A

A′
correspond

to invertible rules for associativity, commutativity and units.

As described in section 1.2.4, the main innovation that comes with open deduction is

atomicity. Atomicity for µ-astractions is possible with another medial rule:

(A ∧B) ∨ C
(A ∨ C) ∧ (B ∨ C)

m’

Instead of duplicating a µ-abstraction µα.t, we can duplicate t independently, then

distribute µα. If t : ⊥ and α : C:

µα.t :⊥ ∨ Cα
µα.t :(⊥ ∨ Cα) ∧ µα.t :(⊥ ∨ Cα)

M 
t :⊥

t :⊥ ∧ t :⊥ M ∨ C
α

µα.t :(⊥ ∨ Cα) ∧ µα.t :(⊥ ∨ Cα)
m’

2.4.1 Inference rules

In addition to the rules for the atomic λ-calculus, we need to consider corresponding

rules for µ-abstraction, stream application and stream construction.

As we type λ-variables and λ-terms with formulas A, dually µ-variables and streams

can be typed with negated formulas ¬A.

As in the atomic λ-calculus, whenever possible, we would like to avoid disjunctions,
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have conjunctive formulas Γ as premises, and have formulas A → B, atoms or ⊥ as

main conclusions. Thus distributivity (medial) and co-contraction are used to define

distributors, but are never explicitly used. We omit disjunctions denoting µ-variables

until a µ-variable becomes bound with a µ-abstraction.

Equality rules

We use double inferences
A
B

to denote an equation between A and B. In particular,

we use the following equations:
A
A

⊥ ∨A
A

Abstraction rules

The µ-abstraction rule is very similar to the λ-abstraction rule. In µα.t, the µ-variable

α : ¬A must occur free in t, just as in λx.t the λ-variable x : A must occur free. Then,

whereas λ-abstraction corresponds to combining the derivation of t with the implication

A→, µ-abstraction corresponds to the disjunction of the derivation of t with A.

B
A→ (A ∧B)

λ
B

(B ∧ ¬A) ∨A
µ

Application rules

The three applications correspond to different forms of conjunctions. Term application

is followed by modus ponens, and stream application is followed by ⊥ introduction.

Streams t ◦ S are constructed by adding a term t : B to a stream S : ¬A. The type

of t ◦ S can therefore be seen as B ∧ ¬A, which is classically equivalent to the negated

type ¬(B → A). We then obtain negated types for µ-variables and streams.

A ∧ (A→ B)

B
@

A ∧ ¬A
⊥ @n

B ∧ ¬A
¬(B → A)

◦

Contraction rules

A
A ∧ · · · ∧A M

A ∨ · · · ∨A
A

O

Distributivity rules

(A1 ∨ · · · ∨An)→ (B1 ∧ · · · ∧Bn)

(A1 → B1) ∧ · · · ∧ (An → Bn)

(A1 ∧ · · · ∧An) ∨ C
(A1 ∨ C) ∧ · · · ∧ (An ∨ C)

δ
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Distributors

A→ (B1 ∧ · · · ∧Bn)

(A→ B1) ∧ · · · ∧ (A→ Bn)
dλ

(⊥ ∧ · · · ∧ ⊥) ∨B
B ∧ · · · ∧B dµ

2.4.2 ΛµSa-terms

Typing derivations for ΛµSa-terms are as follows:

x ≡ Ax α ≡ ¬A

λx.t ≡
Γ

Ax →
Γ ∧Ax

t

=⇒

C

λ

µα.t ≡

Γ
Γ ∧ ¬A

t

=⇒

⊥
∨A

µ

A

≡

Γ

Ax

Ax
→

Γ ∧Ax
t

=⇒

C

λ

A→ C

≡

Γ
Γ ∧ ¬A

t

=⇒

⊥
∨A
A

µ

⊥ ∨A
A

(t)u ≡
Γt
t

=⇒

A→ B

∧
Γu=⇒ u
A

B
@

(t)S ≡
Γt
t

=⇒

A

∧
∆S=⇒

S

¬A
⊥ @n

t ◦ S ≡

Γt
t

=⇒

B

∧
∆S=⇒

S

¬A
¬(B → A)

◦
〈t1, . . . , tp〉 ≡

Γ1

t1

=⇒

B1

∧ · · · ∧
Γn=⇒ tn
Bn

u∗[ ~xn ← t] ≡

Γ
t

=⇒

A
A ∧ · · · ∧A M

∧ Σu∗

A ∧ · · · ∧A ∧ Σu∗

u∗

=⇒

C

u∗[ ~γn ← S] ≡

∆
S

=⇒

¬A
¬A ∧ · · · ∧ ¬A M

∧ Σu∗

¬A ∧ · · · ∧ ¬A ∧ Σu∗

u∗

=⇒

C
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u∗[ ~xn � λy.tn] ≡

Γ

Ay →
Γ ∧Ay
tp

=⇒

B1 ∧ · · · ∧Bn

λ

(A→ B1) ∧ · · · ∧ (A→ Bn)
dλ

∧ Σ∗u

(A→ B1) ∧ · · · ∧ (A→ Bn) ∧ Σ∗u
u∗

=⇒

C

u∗[ ~xn � µα.tn] ≡

Γ
Γ ∧ ¬A
tp

=⇒

⊥ ∧ · · · ∧ ⊥
∨A

µ

A ∧ · · · ∧A dµ

∧ Σ∗u

A ∧ · · · ∧A ∧ Σ∗u
u∗

=⇒

C
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An alternative presentation in open deduction can be done with boxes. Here
is an example with atomic λ-terms:

x ≡ Ax 〈t1, . . . , tn〉 ≡
Γ1

t1

∥∥∥∥∥∥

B1

∧ . . . ∧
Γn

tn

∥∥∥∥∥∥

Bn

(t)u ≡

Γ

t

∥∥∥∥∥∥

A→B

∧
∆

u

∥∥∥∥∥∥

A
...............................

A→B ∧A
@ −−−−−−−−−−−−

B

λx.t ≡

Γ
λ −−−−−−−−−−−
A→ Γ ∧A

..............................

Ax →
Γ ∧Ax

t

∥∥∥∥∥∥

B

u[x1, . . . , xn ← t] ≡

Γ

t

∥∥∥∥∥∥

A
....................................

Aa −−−−−−−−−−−−−−−−−
Ax1 ∧ · · · ∧Axn

∧ ∆

.....................................................

Ax1 ∧ · · · ∧Axn ∧∆

u

∥∥∥∥∥∥

B

u[x1, . . . , xn � λy.tn] ≡

Γ
λ −−−−−−−−−−−
A→ Γ ∧A

...........................................

Ay →
Γ ∧Ay

tn
∥∥∥∥∥∥

B1 ∧ · · · ∧Bn
...................................................

A→B1 ∧ · · · ∧Bn
d −−−−−−−−−−−−−−−−−−−−−−−−−−
A→B1 ∧ · · · ∧A→Bn

∧ ∆

....................................................................

A→B1 ∧ · · · ∧A→Bn ∧∆

u

∥∥∥∥∥∥

C
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2.4.3 Reduction rules

Reduction rules in the atomic λµ-calculus correspond to the following transformations

in open deduction, which include cut-elimination:

µ, β rules

• (λx.t)u −→βt t{u/x}

Γt

Ax →
Γt ∧Ax

t

=⇒

B

λ

A→ B

∧
Γu=⇒ u
A

B
@

−→βt

Γt ∧
Γu=⇒ u
A

Γt ∧A
t

=⇒

B

• (λx.t)(u ◦ S) −→βs (t{u/x})S

Γt

Ax →
Γt ∧Ax

t
=⇒

B

λ

A→ B

∧

Γu
u

=⇒

A

∧
∆S

S

=⇒

¬B
¬(A→ B)

◦

⊥ @

−→βs

Γt ∧
Γu
u

=⇒

A
Γt ∧A

t

=⇒

B

∧
∆S

S

=⇒

¬B

⊥ @n

• (µβ.t)u −→µt µβ.t{u ◦ β / β}

Γt
Γt ∧ ¬(B → C)

t

=⇒

⊥
∨ (B → C)

µ

(B → C)

∧
Γu
u

=⇒

B

C
@

−→µt

Γt ∧ Γu

Γt ∧

Γu
u

=⇒

B

∧ ¬C

¬(B → C)
◦

Γt ∧ ¬(B → C)

t

=⇒

⊥

∨ C

µ

C
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• (µβ.t)S −→µs t{S/β}

Γt
Γt ∧ ¬B

t

=⇒

⊥
∨B

µ

B

∧
∆S

S

=⇒

¬B

⊥ @n

−→µs

Γt ∧
∆S

S

=⇒

¬B
Γt ∧ ¬B

t

=⇒
⊥

Congruence rules

• t∗[φ][ψ] ∼ t∗[ψ][φ]

Γ′φ ∧
Γ′ψ
ψ

=⇒
Γψ

∧ Σt

Γ′φ
φ

=⇒

Γφ

∧ Γψ ∧ Σt

Γφ ∧ Γψ ∧ Σt

t

=⇒

B

∼

Γ′φ
φ

=⇒

Γφ

∧ Γ′ψ ∧ Σt

Γφ ∧
Γ′ψ
ψ

=⇒

Γψ

∧ Σt

Γφ ∧ Γψ ∧ Σt

t

=⇒

B

Lifting rules

• λx.(u[φ]) −→s (λx.u)[φ] if x ∈ FV (u)

Γ′φ ∧ Γu

A→

Γ′φ
φ

=⇒

Γφ

∧ Γu ∧A

Γφ ∧ Γu ∧A
u

=⇒

B

λ

−→s

Γ′φ
φ

=⇒

Γφ

∧ Γu

A→
Γφ ∧ Γu ∧A

u

=⇒

B

λ
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• µα.(u[φ]) −→s (µα.u)[φ] if α ∈ FV (u)

Γ′φ ∧ Γu

(Γ′φ ∧ Γu ∧ ¬A)

Γ′φ
φ

=⇒

Γφ

∧ Γu ∧ ¬A

Γφ ∧ Γu ∧ ¬A
u

=⇒

⊥

∨A

µ

A

−→s

Γ′φ
φ

=⇒

Γφ

∧ Γu

Γφ ∧ Γu ∧ ¬A
u

=⇒

⊥
∨A

µ

A

• (u[φ])t (shown)

(u)t[φ] (similar)
−→s ((u)t)[φ]

Γ′φ
φ

=⇒

Γφ

∧ Γu

Γφ ∧ Γu
u

=⇒

A→ B

∧
Γt
t

=⇒

A

B
@

−→s

Γ′φ
φ

=⇒

Γφ

∧ Γu ∧ Γt

Γφ ∧ Γu
u

=⇒

A→ B

∧ Γt

(A→ B) ∧
Γt
t

=⇒

A
B

@
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• (u[φ])S −→s ((u)S)[φ] (shown)

(u[φ]) ◦ S −→s (u ◦ S)[φ] (similar)

Γ′φ
φ

=⇒

Γφ

∧ Γu

Γφ ∧ Γu
u

=⇒

A

∧
∆S

S

=⇒

¬A

⊥ @n

−→s

Γ′φ
φ

=⇒

Γφ

∧ Γu ∧∆S

Γφ ∧ Γu
u

=⇒
A

∧∆S

A ∧
∆S

S

=⇒

¬A
⊥ @n

• u∗[ ~xp ← t[φ]] −→s u
∗[ ~xp ← t][φ]

Γ′φ
φ

=⇒

Γφ

∧ Γt

Γφ ∧ Γt

t

=⇒

A
Ax1 ∧ · · · ∧Axp M

∧ Σu∗

Ax1 ∧ · · · ∧Axp ∧ Σu∗

u∗

=⇒

B

−→s

Γ′φ
φ

=⇒

Γφ

∧ Γt ∧ Σu∗

Γφ ∧ Γt

t

=⇒

A
Ax1 ∧ · · · ∧Axp M

∧ Σu∗

Ax1 ∧ · · · ∧Axp ∧ Σu∗

u∗

=⇒

B
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• u∗[~γq ← S[φ]] −→s u
∗[~γq ← S][φ]

Γ′φ
φ

=⇒

Γφ

∧∆S

Γφ ∧∆S

S

=⇒

¬A
¬Aγ1 ∧ · · · ∧ ¬Aγp M

∧ Σu∗

¬Aγ1 ∧ · · · ∧ ¬Aγp ∧ Σu∗

u∗

=⇒

B

−→s

Γ′φ
φ

=⇒

Γφ

∧∆S ∧ Σu∗

Γφ ∧∆S

S
=⇒

¬A
¬Aγ1 ∧ · · · ∧ ¬Aγp M

∧ Σu∗

¬Aγ1 ∧ · · · ∧ ¬Aγp
u∗

=⇒

B
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• u∗[ ~xp � λy.tp[φ]] −→s u
∗[ ~xp � λy.tp][φ] if y ∈ FV (tp)

Γtp ∧ Γ′φ

Ay →

Γ′φ
φ

=⇒

Γφ

∧ Γtp ∧Ay

Γφ ∧ Γtp ∧Ay
tp

=⇒

B1 ∧ · · · ∧Bp

λ

A→ (B1 ∧ · · · ∧Bp)
(A→ B1) ∧ · · · ∧ (A→ Bp)

dλ

∧ Σu∗

(A→ B1) ∧ · · · ∧ (A→ Bp) ∧ Σu∗

u∗

=⇒

B

−→s

Γ′φ
φ

=⇒

Γφ

∧ Γtp ∧ Σu∗

Γtp ∧ Γφ

Ay →
Γφ ∧ Γtp ∧Ay

tp

=⇒

B1 ∧ · · · ∧Bp

λ

(A→ B1) ∧ · · · ∧ (A→ Bp)
dλ

∧ Σu∗

(A→ B1) ∧ · · · ∧ (A→ Bp) ∧ Σu∗

u∗

=⇒

B
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• u∗[ ~xp � µα.tp[φ]] −→s u
∗[ ~xp � µα.tp][φ] if α ∈ FV (tp)

Γtp ∧ Γ′φ
Γ′φ
φ

=⇒

Γφ

∧ Γtp ∧ ¬A

(Γφ ∧ Γtp ∧ ¬A)

tp

=⇒

⊥ ∧ · · · ∧ ⊥

∨A

µ

(A ∧ · · · ∧A )
dµ

∧ Σu∗

(A ∧ · · · ∧A ) ∧ Σu∗

u∗

=⇒

B

−→s

Γ′φ
φ

=⇒

Γφ

∧ Γtp

(Γφ ∧ Γtp ∧ ¬A)

tp
=⇒

⊥ ∧ · · · ∧ ⊥
∨A

µ

(A ∧ · · · ∧A )
dµ

∧ Σu∗

(A ∧ · · · ∧A ) ∧ Σu∗

u∗

=⇒

B

Compounding rules

• u∗[~yq ← y][ ~xp, y, ~zr ← t] −→s u
∗[ ~xp, ~yq, ~zr ← t]

Γt
t

=⇒
B

Γ~x ∧ By

By1 ∧ · · · ∧Byq
M ∧ Γ~z

M
∧ Σu∗

Γ~x ∧By1 ∧ · · · ∧Byq ∧ Γ~z ∧ Σu∗

u∗

=⇒

C

−→s

Γt
t

=⇒

B

Γ~x ∧By1 ∧ · · · ∧Byq ∧ Γ~z
M
∧ Σu∗

Γ~x ∧By1 ∧ · · · ∧Byq ∧ Γ~z ∧ Σu∗

u∗

=⇒

C

where Γ~x = Bx1 ∧ · · · ∧Bxp and Γ~z = Bz1 ∧ · · · ∧Bzr

• u∗[ ~αq ← γ][ ~βp, γ, ~δr ← S] −→s u
∗[ ~βp, ~αq, ~δr ← S] : similar
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Unary sharing rules

• u∗[x← t] −→s u
∗{t/x}

Γt
t

=⇒

A
Ax
M

∧ Σu∗

Ax ∧ Σu∗

u∗

=⇒

B

−→s

Γt
t

=⇒

A

∧ Σu∗

A ∧ Σu∗

u∗

=⇒
B

• u∗[α← S] −→s u
∗{S/α} : similar

Duplication rules

• u∗[ ~xp ← (v)t] −→s u
∗{(yi)zi/xi}[~yp ← v][~zp ← t]

Γv
v

=⇒

(A→ B)

∧
Γt
t

=⇒

A

B
@

Bx1 ∧ · · · ∧Bxp
M

∧ Σu∗

Bx1 ∧ · · · ∧Bxp ∧ Σu∗

u∗

=⇒
C

−→s

Γt
t

=⇒

A
Az1 ∧ · · · ∧Azp M

∧ Γv

Az1 ∧ · · · ∧Azp ∧

Γv
v

=⇒

(A→ B)

(A→ B)y1 ∧ · · · ∧ (A→ B)yp
M

(A→ B) ∧A
B

@ ∧ · · · ∧ (A→ B) ∧A
B

@

∧ Σu∗

B ∧ · · · ∧B ∧ Σu∗

u∗

=⇒

C

• u∗[ ~αp ← t ◦ S′] −→s u
∗{yi ◦ α′i / αi}[~yp ← t][ ~α′p ← S′] : similar
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• u∗[ ~xp ← λx.t] −→s u
∗[ ~xp � λx.〈 ~yp 〉[~yp ← t]]

Γt

Ax →
Γt ∧A

t

=⇒

B

λ

(A→ B) ∧ · · · ∧ (A→ B)
M

∧ Σu∗

(A→ B) ∧ · · · ∧ (A→ B) ∧ Σu∗

u∗

=⇒

C

−→s

Γt

Ax →
Γt ∧A

t

=⇒

B
B ∧ · · · ∧B M

λ

(A→ B) ∧ · · · ∧ (A→ B)
dλ

∧ Σu∗

(A→ B) ∧ · · · ∧ (A→ B) ∧ Σu∗

u∗

=⇒

C

• u∗[ ~xp ← µα.t] −→s u
∗[ ~xp � µα.〈 ~yp 〉[~yp ← t]]

Γt
Γt ∧ ¬A

t

=⇒

⊥
∨A

µ

A
Ax1 ∧ · · · ∧Axp M

∧ Σu∗

Ax1 ∧ · · · ∧Axp ∧ Σu∗

u∗

=⇒

C

−→s

Γt
Γt ∧ ¬A

t

=⇒

⊥
⊥ ∧ · · · ∧ ⊥ M

∨A

µ

(A ∧ · · · ∧A )
dµ

∧ Σu∗

(A ∧ · · · ∧A ) ∧ Σu∗

u∗

=⇒

C
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• u∗[ ~xp � λy.〈 ~tp 〉[~zq ← y]] −→s u
∗{λyi.ti[~zili ← yi] / xi}

Γ~tp

Ay →

Γ~tp
∧ Ay

Az1 ∧ · · · ∧Azp M
Γ~tp
∧Az1 ∧ · · · ∧Azp

tp

=⇒

B1 ∧ · · · ∧Bp

λ

(A→ B1) ∧ · · · ∧ (A→ Bp)
dµ

∧ Σu∗

(A→ B1) ∧ · · · ∧ (A→ Bp) ∧ Σu∗

u∗

=⇒

C

−→s

Γt1

Ay1 →
Γt1 ∧Ay1

t1

=⇒

B1

λ

∧ · · · ∧

Γtp

Ayp →
Γtp ∧Ayp

tp

=⇒

Bp

λ

∧ Σu∗

(A→ B1) ∧ · · · ∧ (A→ Bp) ∧ Σu∗

u∗

=⇒

C

where {z1
i , . . . , z

li
i } = {~zq} ∩ FV (ti)
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• u∗[ ~xp � µα.〈 ~tp 〉[~γq ← α]] −→s u
∗{µαi.ti[~γili ← yi] / xi}

Γ~tp

Γ~tp
∧ ¬A

tp

=⇒

⊥ ∧ · · · ∧ ⊥
∨A

µ

(A ∧ · · · ∧A )
dµ

∧ Σu∗

(A ∧ · · · ∧A ) ∧ Σu∗

u∗

=⇒

C

−→s

Γt1
Γt1 ∧ ¬A

t1

=⇒

⊥
∨A

µ

A

∧ · · · ∧

Γtp
Γtp ∧ ¬A

tp

=⇒

⊥
∨A

µ

A

∧ Σu∗

(A ∧ · · · ∧A ) ∧ Σu∗

u∗

=⇒

C

where {γ1
i , . . . , γ

li
i } = {~γq} ∩ FV (ti)

We can observe that types are preserved during reductions.

Theorem 2.4.2. (Subject reduction) If t∗ −→β,µ,s u
∗ and t∗ : T , then u∗ : T .
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Chapter 3

Connecting ΛµSa to ΛµS: towards

PSN

The subject reduction theorem concludes the previous chapter, ensuring that types

are preserved under reduction. Another main property to show is preservation of

strong normalization (PSN), stating that if a ΛµS-term is strongly normalizing (i.e.

each reduction path terminates), its atomic interpretation in ΛµSa is also strongly nor-

malizing. This chapter introduces some core lemmas which attest that our calculus

(regarding sharing reductions and translations) is well-behaved, and which are used

to prove PSN. While PSN seems like a natural property to expect, it has been shown

by Melliès [Mel95] that the pioneer calculus λσ with explicit substitutions [ACCL91]

did not enjoy PSN. Furthermore, where PSN is valid, it can be challenging to prove.

Chapter 4 deals with one main difficulty regarding infinite reductions inside weaken-

ings. Another observation is that sharing reductions correspond to zero steps in the

ΛµS-calculus, so we need to show that these steps normalize. We will show a new

proof for the strong normalization of sharing reductions in Chapter 5, constructing a

measure strictly decreasing with sharing reductions. We finally combine PSN between

the atomic calculus and the weakening calculus and PSN for the weakening calculus.

We now give the naive proof idea for PSN and explain some problems that come with

them. Recall that for T ∈ ΛµS, L T M is its translation in the atomic calculus. For

t ∈ ΛµSa, J t K is its interpretation in the ΛµS-calculus. We would like to prove PSN

for the atomic calculus with respect to the ΛµS-calculus:

For any term T ∈ ΛµS, if T is strongly normalizing then its translation L T M ∈ ΛµSa

is strongly normalizing.
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The easiest way to prove the theorem is to work with its contrapositive: for T ∈ ΛµS,

if L T M ∈ ΛµSa has an infinite reduction path, then T ∈ ΛµS has an infinite reduction

path. This will be illustrated as follows: we translate ( 1 ) a term T ∈ ΛµS into

L T M ∈ ΛµSa. If L T M has an infinite path ( 2 ), then T has an infinite path ( 3 ).

L T M ∈ ΛµSa T ∈ ΛµS

=⇒

∞ ∞

2

3

1

Conveniently, the lemma below, using J−K, states that J L T M K = T , i.e. the translation

L T M of a ΛµS-term T can be taken back to T via interpretation J−K. We can then

construct a sequence in ΛµS from a sequence in ΛµSa, and describe a direct relation

between the atomic calculus and the ΛµS-calculus.

L T M ∈ ΛµSa T = J L T M K ∈ ΛµS

=⇒

∞ ∞

2

3

1

Lemma 3.0.1 (Interpretation is inverse to translation). Let T ∈ ΛµS, then JL T MK = T .

Proof. By induction on T . Let V ∗ be a term or a stream, let χ, χi be variables. Recall

that li
χi

means replacing χi with li fresh distinct variables. Let σ =
l1
χ1

. . .
lp
χp︸ ︷︷ ︸

occurrences in T

,

replacing the different occurrences of each free variable χi with fresh, distinct variables.

Let Φ = [ ~χ1
l1 ← χ1] . . . [ ~χp

lp ← χp]. We use the inductive hypothesis: J L Tσ M′ K = Tσ.

• Let T = χ. Then:

J L χ M′ K = χ
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• Let T = @(U, V ∗). In this case σ = σ1σ2 =
l1
χ1

. . .
lk
χk︸ ︷︷ ︸

occurrences in U

lk+1

χk+1
. . .

lp
χp︸ ︷︷ ︸

occurrences in V ∗

. Then:

J L @(U, V ∗)σ M′ K = J L @(Uσ1, V
∗σ2) M′ K

= J @(L Uσ1 M′, L V ∗σ2 M′) K

= @(J L Uσ1 M′ K, J L V ∗σ2 M′ K)

= @(Uσ1, V
∗σ2)

= @(U, V ∗)σ

• Let T = Ax.U . Suppose |U |x = p 6= 1.

Then:

J L (Ax.U)σ M′ K = JAx.L Uσ M′ K

= Ax.J L Uσ M′ K

= Ax.(Uσ)

= (Ax.U)σ

Then, since ⦃ Φ ⦄ and σ are inverse operations, we have

J L T M K = J L Tσ M′Φ K = J L Tσ M′ K⦃ Φ ⦄ = Tσ⦃ Φ ⦄ = T

In particular, PSN would be proven if one could show that one atomic reduction step

corresponds to at least one ΛµS-reduction step. Unfortunately this is not true in

general, as sharing reductions and reductions inside weakenings correspond to zero

steps in the ΛµS-calculus. The lemma below shows that sharing reductions are well-

behaved, in the sense that two terms t −→∗s u are equated when translated back in the

ΛµS-calculus. That is to say, if two atomic terms are β, µ equivalent and only differ

by sharing reductions, they keep the same denotation in the ΛµS-calculus.

Lemma 3.0.2 (Sharing reduction preserves interpretation). For t, u ∈ ΛµSa, if t −→s u

then J t K = J u K.

Proof. • Lifting rules:
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1. If x ∈ FV (u):

Ax.(u[φ]) −→s (Ax.u)[φ]

JAx.(u[φ]) K = Ax.J (u[φ]) K

= Ax.(J u K⦃ φ ⦄)

= (Ax.J u K)⦃ φ ⦄

= (JAx.u K)⦃ φ ⦄

= J (Ax.u)[φ] K

2.

@(u[φ], τ) −→s @(u, τ)[φ]

J @(u[φ], τ) K = @(J u[φ] K, J τ K)

= @(J u K⦃ φ ⦄, J τ K)

= @(J u K, J τ K)⦃ φ ⦄

= J @(u, τ) K⦃ φ ⦄

= J @(u, τ)[φ] K

3.

[ ~χp ← τ [φ]] −→s [ ~χp ← τ ][φ]

⦃ ~χp ← τ [φ] ⦄ = {J τ [φ] K/χi}i≤p
= {J τ K/χi}i≤p⦃ φ ⦄

= ⦃ ~χp ← τ ⦄⦃ φ ⦄

= ⦃ [ ~χp ← τ ][φ] ⦄

4. If y ∈ FV (tp):

[ ~xp � Ay.tp[φ]] −→s [ ~xp � Ay.tp][φ]

⦃ ~xp � Ay.tp[φ] ⦄ = ⦃ ~xp � Ay.tp ⦄⦃ φ ⦄

= ⦃ [ ~xp � Ay.tp][φ] ⦄

• Compounding rules:
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1.

[ ~χp ← χ][ ~χ′m, χ, ~χ
′′
n ← τ ] −→s [ ~χ′m, ~χp, ~χ

′′
n ← τ ]

⦃ [ ~χp ← χ][ ~χ′m, χ, ~χ
′′
n ← τ ] ⦄ = ⦃ ~χp ← χ ⦄⦃ ~χ′m, χ, ~χ′′n ← τ ⦄

= {χ/χi}i≤p{J τ K/χ′j}j≤m
{J τ K/χ′′k}k≤n{J τ K/χ}

= {J τ K/χ′j}j≤m{J τ K/χ′′k}k≤n
{J τ K/χi}i≤p

= ⦃ ~χ′m, ~χp, ~χ′′n ← τ ⦄

• Unary sharing rules:

1.

[χ← τ ] −→s {τ/χ}
⦃ χ← τ ⦄ = {J τ K/χ}

• Duplication rules:

1.

[ ~χp ← @(v, τ)] −→s {@(χ′i, χ
′′
i )/χi}[ ~χ′p ← v][ ~χ′′p ← τ ]

⦃ ~χp ← @(v, τ) ⦄ = {J @(v, τ) K/χi}i≤p
= {@(J v K, J τ K)/χi}i≤p
= {@(χ′i, χ

′′
i )/χi}i≤p{J v K/χ′p}i≤p{J τ K/χ′′i }i≤p

= {@(χ′i, χ
′′
i )/χi}⦃ [ ~χ′p ← v][ ~χ′′p ← τ ] ⦄

2.

[ ~xp ← Ax.t] −→s [ ~xp � Ax.〈 ~yp 〉[~yp ← t]]

⦃ ~xp ← Ax.t ⦄ = {JAx.t K/xi}i≤p
= {Ax.J t K/xi}i≤p
= {Ax.J yi K/xi}i≤p{J t K/yi}i≤p
= ⦃ ~xp � Ax.〈 ~yp 〉[~yp ← t] ⦄
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3. Let {z1
i , . . . , z

li
i } = {~zq} ∩ FV (ti). Then:

[ ~xp � Ay.〈 ~tp 〉[~zq ← y]] −→s { Ayi.ti[~zlii ← yi] /xi}i≤p
⦃ ~xp � Ay.〈 ~tp 〉[~zq ← y] ⦄ = {(Ay.J ti K⦃ ~zq ← y ⦄)/xi}i≤p

= {(Ay.J ti K{y/zj}j≤q)/xi}i≤p
=α {(Ayi.J ti K{yi/zli}i≤p)/xi}i≤p
= { JAyi.ti[~zlii ← yi] K /xi}i≤p

Sharing reduction is well-behaved, and we show in Chapter 5 (Theorem 5.5.3) that

it is in particular strongly normalizing. Intuitively, this means that procedures such

as compounding sharings, evaluating unary sharings, atomically unfolding sharings

(duplications), and organizing the term structure (liftings) must terminate. Now if an

atomic term t has an infinite reduction path, the path looks like

t −→β,µ t
′
1 −→∗s t1 −→β,µ . . .

with a finite number of s-steps between an infinite number of β or µ-steps.

The following theorem shows that a (β, µ)-step in the atomic calculus is interpreted

as zero or more steps in the ΛµS-calculus. Because we have 0-ary closures, an atomic

(β, µ)-step can correspond to zero steps in the ΛµS-calculus.

t ∈ ΛµSa J t K ∈ ΛµS

t′ ∈ ΛµSa J t′ K ∈ ΛµS

1
β,µ

J−K

∗
β,µ

J−K

Theorem 3.0.3. Let t ∈ ΛµSa. If t −→β,µ t
′ then J t K −→∗β,µ J t′ K.

Proof. By induction on t.

• If t is a redex:
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– If t = (λx.u)v −→β u{v/x} = t′. Then

J t K = (λx.J u K)J v K

−→β J u K{J v K/x}
= J t′ K

– The other cases are similar.

• If t = @(u, τ) −→β,µ @(u′, τ) = t′. By induction hypothesis,

J u K −→∗β,µ J u′ K

Therefore

J t K = @(J u K, J τ K) −→∗β,µ @(J u′ K, J τ K) = J t′ K

The proof is similar if t = @(u, τ) −→β,µ @(u, τ ′) = t′.

• If t = Ax.u −→β,µ Ax.u′ = t′. By induction hypothesis,

J u K −→∗β,µ J u′ K

Therefore

J t K = Ax.J u K −→∗β,µ Ax.J u′ K = J t′ K

• If t∗ = u∗[φ] −→β,µ u
∗′[φ] = t∗′. By induction hypothesis, J u∗ K −→∗β,µ J u∗′ K.

Therefore:

J t∗ K = J u∗ K⦃ φ ⦄

−→∗β,µ J u∗′ K⦃ φ ⦄

= J t∗′ K

• If tp = 〈 u1, . . . , ui, . . . , up 〉 −→β,µ 〈 u1, . . . , u
′
i, . . . , up 〉 = t′p.

By induction hypothesis J ui K −→∗β,µ J u′i K. Therefore:

J tp K = 〈 J u1 K, . . . , J ui K, . . . , J up K 〉
−→∗β,µ 〈 J u1 K, . . . , J u′i K, . . . , J up K 〉
= J t′p K
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• If p 6= 0 and

[φ] = [ ~χp ← τ ] −→β,µ [ ~χp ← τ ′] = [φ′]

By induction hypothesis J τ K −→∗β,µ J τ ′ K. Therefore:

⦃ φ ⦄ = ⦃ J τ K/χp ⦄ −→∗β,µ {J τ ′ K/χp} = ⦃ φ′ ⦄

• If [φ] = [← τ ] −→β,µ [← τ ′] = [φ′]. Then ⦃ φ ⦄ = ∅ = ⦃ φ′ ⦄.

• If p 6= 0 and

[φ] = [ ~xp � Ay.〈 ~up 〉[Ψ]] −→β,µ [ ~xp � Ay.〈 ~u′p 〉[Ψ′]] = [φ′]

By induction hypothesis

J 〈 ~up 〉[Ψ] K −→∗β,µ J 〈 ~u′p 〉[Ψ′] K

⦃ φ ⦄ = {Ay.J ui[Ψ] K/xi}
−→∗β,µ {Ay.J u′i[Ψ′] K/xi}
= ⦃ φ′ ⦄

• If [φ] = [� Ay.〈 〉[Ψ]] −→β,µ [� Ay.〈 〉[Ψ′]] = [φ′]

⦃ φ ⦄ = ∅ = ⦃ φ′ ⦄

By Theorem 3.0.3, we know that one β, µ step in the atomic calculus gives zero or

more β, µ steps in the ΛµS-calculus, showing that the atomic calculus is well-behaved.

The following theorem states that after applying atomic reductions on the translation

L T M of a ΛµS-term T , interpreting the result back in the ΛµS-calculus corresponds to

β/µ-reduction. For a ΛµS-term T , if its atomic translation L T M reduces to t′, then T

reduces in zero or more steps to J t′ K:

Theorem 3.0.4 (Atomic reduction implements ΛµS-reduction). For any T ∈ ΛµS, if

L T M −→1 t′ then J L T M K = T −→∗ T ′ for a certain T ′ = J t′ K ∈ ΛµS.
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L T M ∈ ΛµSa T = J L T M K ∈ ΛµS

t′ T ′ = J t′ K

1 ∗
J−K

Proof. Suppose T is such that L T M −→1 t′. Let T ′ = J t′ K.

By Lemma 3.0.1 T = J L T M K, and:

• If L T M −→s t
′, by Lemma 3.0.2 T = J L T M K = J t′ K = T ′.

• If L T M −→β,µ t
′, by Theorem 3.0.3 T = J L T M K −→∗β,µ J t′ K = T ′.

Sharing reductions are strongly normalizing and J−K takes a path in the atomic calculus

to a corresponding path the in ΛµS-calculus:

L T M = t −→ t1 −→ t2 −→ . . .

J t K = T −→∗ J t1 K −→∗ J t2 K . . .

The remaining task to show PSN is to take an infinite path in the atomic calculus to an

infinite path in the ΛµS-calculus. Since sharing reductions are strongly normalizing,

we focus on (β, µ) reductions. Reductions inside weakenings are the only obstacle left,

take the following example:

Example 3.0.5. Let T = (λy.x) Ω, where Ω is the usual term with an infinite reduction.

Then T −→β T
′ = x, and

L T M = (λy.x[← y]) L Ω M −→β t
′ = x[← L Ω M]

The term J t′ K = T ′ = x is in normal form, however there exists an infinite reduction

path from t′.

We thus need to work with reduction strategies that would preserve infinite paths, by

preventing diverging terms from falling into weakenings. Chapter 4 provides a strategy

preventing this situation from happening. From there, we finally obtain PSN.
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Chapter 4

The weakening calculus

For our proof of PSN, we would like to construct an infinite reduction path in the ΛµS-

calculus from an infinite reduction path in the atomic ΛµSa-calculus. However, some

β, µ infinite reductions may fall inside weakenings, making one atomic reduction step

correspond to zero ΛµS-steps. We therefore cannot directly construct an infinite path

in the ΛµS-calculus from an infinite path in the atomic calculus. For these purposes, we

use an intermediate calculus, the weakening calculus ΛµSw, between the ΛµS-calculus

and the atomic ΛµSa-calculus. Our proof for PSN is then split into two parts. First

we get a straightforward proof for PSN between the atomic calculus and the weakening

calculus (i.e. J−Kw preserves non-termination, Theorem 4.2.3), by translating an infinite

reduction in the atomic calculus to an infinite reduction in the weakening calculus. In

particular, we show that a β, µ-step in the atomic calculus gives at least one step in

the weakening calculus (J− Kw strictly preserves β, µ-reductions, Lemma 4.2.2), and

that a sharing atomic step gives zero or more steps in the weakening calculus (J−Kw
commutes with sharing reduction, Theorem 5.2.1). The remaining part, PSN between

the weakening calculus and the ΛµS-calculus, isolates the hard part of the proof, and

requires looking at strategies. This part is shown in this chapter. By combining these

two intermediate PSN results, and using the strong normalization of sharing reductions

(shown in Chapter 5), we obtain PSN for the atomic λµ-calculus with respect to the

λµ-calculus.
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t ∈ ΛµSa J t Kw ∈ ΛµSw

4.2.2
=⇒

t′ J t′ Kw

β,µ

1

β,µ

+

t ∈ ΛµSa J t Kw ∈ ΛµSw

5.2.1
=⇒

t′ J t′ Kw

s

1 ∗

t = L T M ∈ ΛµSa J t Kw = L T Mw ∈ ΛµSw T ∈ ΛµS

4.2.3
=⇒

4.3.20
=⇒

∞ ∞ ∞

4.1 The weakening calculus ΛµSw

In this section we define the weakening calculus ΛµSw and its reduction rules. The

calculus unfolds sharing (interpreted from the atomic calculus by substitutions i.e.

duplications) while keeping weakenings. Instead of using a distributor as in ΛµSa that

would only be used for abstractions, we add a new term • which corresponds to a bound

variable x in a distributor [� Ax.t].

4.1.1 Syntax and translations L−Mw, J−Kw

In the weakening calculus, variables do not occur linearly as in the atomic calculus

ΛµSa, however, bound variables can occur zero times or more. The syntax of the
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weakening calculus ΛµSw is as follows:

Terms T,U ::= x | λx.T (∗) | (T )U | (T )S | µα.T (∗) | U [φ] | •(∗∗)

Streams S ::= α | T ◦ S | S[φ]

Closures [φ], [ψ] ::= [← U ] | [← S]

(∗) where x, α ∈ FV (T ) and (∗∗) the bullet • may only occur inside weakenings.

Notation 2. We denote:

1. terms and streams by U∗ (and we call U∗ an expression of ΛµSw),

2. applications (T )U∗, T ◦ U∗ by @(T,U∗),

3. abstractions λx.T, µα.T{α/x} by Ax.T .

We can now define the translation L−Mw of ΛµS-terms to weakening terms:

Definition 4.1.1. [Translation ΛµS
L−Mw−→ ΛµSw] Let χ be a variable.

• L χ Mw = χ

• L @(t, u∗) Mw = @(L t M, L u∗ M)

• LAx.t Mw =

{
Ax.L t Mw if x ∈ FV (t)

Ax.(L t Mw[← x]) otherwise

We now define the translation J−Kw from atomic terms to weakening terms, as well as

the auxiliary function ⦃−⦄w translating closures as substitutions or weakenings:

Definition 4.1.2. [Translation ΛµSa
J−Kw−→ ΛµSw] Let τ ∈ T ∪ S.

1. J x Kw = x

2. JAx.t Kw = Ax.J t Kw

3. J @(t, τ) Kw = @(J t Kw, J τ Kw)

4. J u∗[φ] Kw = J u∗ Kw⦃ φ ⦄w

5. ⦃ ~χp ← τ ⦄w =

{
[← J τ Kw] if p = 0

{J τ Kw/χi}1≤i≤p if p ≥ 1
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6. ⦃ ~xp � Ay.〈 ~tp 〉[Ψ] ⦄w =

{
⦃ Ψ ⦄w{•/y} if p = 0

{Ay.J ti[Ψ] Kw/xi}1≤i≤p if p ≥ 1

7. ⦃ Ψ ⦄ = ⦃ ψ1 ⦄ . . . ⦃ ψn ⦄ where [Ψ] = [ψ1] . . . [ψn]

Another translation b−c from weakening terms to ΛµS-terms is done, discarding all

weakenings. The • symbol appears in weakenings of ΛµSw, and therefore is discarded

with b−c:

Definition 4.1.3. [Translation ΛµSw
b−c−→ ΛµS ] Let χ be a variable, let τ be a term

or a stream. Then:

1. bχc = χ

2. bAx.T c = Ax.bT c

3. b@(T,U∗)c = @(bT c, bU∗c)

4. bU [← T ∗]c = bUc

We need to define subexpressions of weakenings terms to describe reduction rules:

Definition 4.1.4. [Subexpressions in ΛµSw] Let U∗, V ∗ ∈ ΛµSw. We define by induc-

tion on U∗ the set E(U∗) of subexpressions of U∗:

1. E(x) = {x}

2. E(Ax.T ) = {Ax.T} ∪ E(T )

3. E(@(T, V ∗)) = {@(T, V ∗)} ∪ E(T ) ∪ E(V ∗)

4. E(V ∗[φ]) = {V ∗[φ]} ∪ E(V ∗) ∪ E(φ)

5. E(V ∗[← U∗]) = {V ∗[← U∗]} ∪ E(V ∗) ∪ E(U∗)

6. E(•) = ∅

We can observe that for a ΛµS-term T , its weakening translation L T Mw corresponds

to the denotation in the weakening calculus of its atomic translation L T M, making the
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weakening calculus act as a bridge between ΛµS-terms and their atomic translation.

We will show the following:

T ∈ ΛµS L T Mw ∈ ΛµSw L T M ∈ ΛµSa

bJ t Kwc ∈ ΛµS J t Kw ∈ ΛµSw t ∈ ΛµSa

L−Mw

4.3.19

L−M

4.1.5

b−c J−Kw

In particular, we have two retractions from ΛµSa to ΛµS, and from ΛµSw to ΛµS.

However, we do not have a retraction from ΛµSa to ΛµSw. For example, a term in the

weakening calculus such as Tw = x[← (•)•] could come from

x[� λy.〈 〉[� λz.〈 〉[← (y)z]]]

(after reducing from x[← λy.λz.(y)z])

but also from

x[� λy.〈 〉[← (y1)y2[y1, y2 ← y]]]

(after reducing from x[← λy.(y1)y2[y1, y2 ← y]]).

J t Kw ∈ ΛµSw T ∈ ΛµS t = L T M ∈ ΛµSa

Lemma 4.1.5. For T ∈ ΛµS, J L T M Kw = L T Mw.

T ∈ ΛµS L T M ∈ ΛµSa

L T Mw ∈ ΛµSw JL T MKw ∈ ΛµSw

L−Mw

L−M

J−Kw

Proof. The proof is similar to Lemma 3.0.1 (Interpretation is inverse to translation).
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4.1.2 Weakening reductions

From the atomic calculus to the weakening calculus, weakenings are kept, while other

sharings are interpreted with duplications (substitutions). The reductions rules in the

weakening calculus aim to capture atomic rules for nullary sharings and distributors.

Weakening reductions are presented below, and will be explained after:

Definition 4.1.6. [Weakening removals in ΛµSw]

Lifting rules

1. Ax.(U [φ]) −→w (Ax.U)[φ] if x ∈ FV (U)

2.
@(U [φ], T ∗)

@(U, T ∗[φ])
−→w @(U, T ∗)[φ]

3. U∗[← T ∗[φ]] −→w U
∗[← T ∗][φ]

Compounding rules

1. U∗[← T ∗] −→w U
∗ if T ∗ is a subexpression of U∗

Duplication rules

1. U∗[← @(V, T ∗)] −→w U
∗[← V ][← T ∗]

2. U∗[← Ax.T ] −→w U
∗[← T{•/x}]

3. U∗[← •] −→w U
∗

The • captures the deleted variable in a distributor. In the atomic calculus, a nullary

distributor [� Ax.〈〉[← x]] could be translated in the weakening calculus by a weakened

variable [← x], but this would create α-equivalence issues as

[� Ax.〈 〉[← x]] =α [� Ay.〈 〉[← y]]

when [← x] 6= [← y]. For this reason we use • instead of a variable.
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Example 4.1.7. In the atomic calculus:

[← λx.(x)(y)z] −→s [� λx.〈 〉[← (x)(y)z]]

−→s [� λx.〈 〉[← x][← (y)z]]

−→s [� λx.〈 〉[← x]][← (y)z]

−→s [← (y)z]

In the weakening calculus:

[← λx.(x)(y)z] −→w [← ((x)(y)z){•/x}]
= [← (•)(y)z]

−→w [← •][← (y)z]

−→w [← (y)z]

Now consider U∗[← T ∗] where T ∗ is a subexpression of U∗. With the other rules in

the weakening calculus, this term can eventually reduce to U∗[← χ1] . . . [← χp] where

χ1, . . . , χp = FV (T ∗). Consider the following example:

Example 4.1.8. In the atomic calculus:

(x)y1[← y2][y1, y2 ← y] −→s (x)y1[y1 ← y] −→s (x)y

The weakening [← y2] is removed by applying a compounding rule. In the weakening

calculus the term is translated to (x)y[← y], and we would like to have a rule to remove

the weakening [← y]. A rule in the weakening calculus that would correspond to the

compounding rule in the atomic calculus would be:

U∗[← χ] −→w U
∗

if χ ∈ FV (U∗). We would then have:

(x)y[← y] −→s (x)y

We could therefore add the rule U∗[← χ] −→w U
∗ if χ ∈ FV (U∗), but instead we use

a more general rule:

U∗[← T ∗] −→w U
∗

if T ∗ is a subexpression of U∗.
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In the example below, we see that applying the general rule saves several reduction

steps, and therefore is more convenient to use.

Example 4.1.9. Let t = λa.(a)z = J t Kw = T . In the atomic calculus:

(x)(λk.(k)z1)u[← λk.(k)z2][z1, z2 ← t] −→∗s (x)(λk.(k)z1)u[← z2][z1, z2 ← t]

−→∗s (x)(λk.(k)t)u

= (x)(λk.(k)(λa.(a)z))u

In the weakening calculus:

J (x)(λk.(k)z1)u[← λk.(k)z2][z1, z2 ← t] Kw = (x)(λk.(k)T )u[← λk.(k)T ]

−→w (x)(λk.(k)T )u

= (x)(λk.(k)(λa.(a)z))u

This rule can also come from lifting sharings:

Example 4.1.10. Let t, u ∈ ΛµSa, let T = J t Kw, and U = Ju Kw. In the atomic calculus:

(x1)x2[x1, x2 ← t[← u]] −→s (x1)x2[x1, x2 ← t][← u]

In the weakening calculus:

J (x1)x2[x1, x2 ← t[← u]] Kw

= (T [← U ])(T [← U ])

−→∗w (((T )T )[← U ])[← U ]

−→w (T )T [← U ]

4.2 Properties of J−Kw

In this section we show that J−Kw strictly preserves β, µ-reductions. Recall that the

weakening calculus has explicit weakenings [← U ], but no sharings [x1, . . . , xp ← U ]

where p > 0. For distributors, we introduced a new • symbol, which translates in

the weakening calculus a bound variable x (respectively α) in a nullary distributor

[� λx.〈 〉[Φ]] (respectively [� µα.〈 〉[Φ]]) from the atomic calculus. This bound

variable could be represented in the weakening calculus by a free variable, however

we do not want this variable to become accidentally bound later, therefore we use •
to represent it instead. For a ΛµS-term T , L T Mw is its translation in the weakening
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calculus. For an atomic term t, J t Kw is its translation in the weakening calculus. For

a weakening term U , the term bUc ∈ ΛµS corresponds to U where all the weakenings

have been removed.

We will combine two theorems:

• J−Kw preserves non-termination 4.2.3

• PSN for the weakening calculus 4.3.20

t ∈ ΛµSa J t Kw ∈ ΛµSw

4.2.2
=⇒

t′ J t′ Kw

β,µ

1

β,µ

+

t ∈ ΛµSa J t Kw ∈ ΛµSw

u ∈ ΛµSa J u Kw ∈ ΛµSw

s

J−Kw

∗
J−Kw

First, Theorem 4.2.3 is true by design of the weakening calculus (and because of strong

normalization of sharing reductions), one (β, µ) step in the atomic calculus corresponds

to at least one step in the weakening calculus (Lemma 4.2.2). The second theorem is

less direct to show, and requires using a strategy that would find a perpetual reduction

path in the weakening calculus corresponding to an infinite path in the ΛµS-calculus.

The core idea is that if an infinite reduction of LT Mw was occurring inside a weakening,

it could have occurred outside the weakening as well.

The lemma below shows that, from a ΛµS-term T , one reduction step leads to at least

a (β, µ)-reduction step in the weakening calculus.

Lemma 4.2.1. Let T ∈ ΛµS. If L T M −→β,µ t
′ then J L T M Kw −→+

β,µ J t′ Kw.

L T M ∈ ΛµSa J L T M Kw = L T Mw ∈ ΛµSw

4.2.1
=⇒

t′ J t′ Kw

β,µ β,µ

+
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Proof. By induction on T . Let τ be a term or a stream, let χ, χi be variables. Recall

that li
χi

means replacing χi with li fresh distinct variables. Recall that

L T M =L T
l1
x1
. . .

lp
xp

lp+1

α1
. . .

lp+k
αk

M′[ ~(x1)l1 ← x1] . . . [ ~(xp)lp ← xp]

[ ~(α1)lp+1
← α1] . . . [ ~(αk)lp+k ← αk]

Let σ =
l1
χ1

. . .
lp
χp︸ ︷︷ ︸

occurrences in τ

, replacing the different occurrences of each free variable χi with

fresh, distinct variables. Let Φ = [ ~χ1
l1 ← χ1] . . . [ ~χp

lp ← χp]. We use the inductive

hypothesis: J L τσ M′ Kw = L τ Mwσ. Also, since ⦃ Φ ⦄w and σ are inverse operations, we

have

J L T M Kw = J L Tσ M′Φ Kw = J L Tσ M′ Kw⦃ Φ ⦄w = L T Mwσ⦃ Φ ⦄w = L T Mw

• If τ = χ, then J L χ M′ Kw = J χ Kw = χ = L χ Mw.

• Let T = @(U, τ). Then σ = σ1σ2 =
l1
χ1

. . .
lk
χk︸ ︷︷ ︸

occurrences in U

lk+1

χk+1
. . .

lp
χp︸ ︷︷ ︸

occurrences in τ

.

– If T = @(Ax.U, τ):

1. Suppose |u|x = p 6= 1.

L (λx.u)v M = L ((λx.u)v)σ M′Φ

= ((λx.L uσ1 M′)L vσ2 M′)Φ

−→βt (L uσ1 M′[x← L vσ2 M′])Φ

Then:

J L (λx.u)v M Kw = J L (λx.u)v M′Φ Kw

= J ((λx.L uσ1 M′)L vσ2 M′)Φ Kw

= ((λx.J L uσ1 M′ Kw)J L vσ2 M′ Kw)⦃ Φ ⦄w
= ((λx.L uσ1 Mw)L vσ2 Mw)⦃ Φ ⦄w
−→βt L u Mw{L v Mw/x}σ1σ2⦃ Φ ⦄w
= L u Mw{L v Mw/x}σ⦃ Φ ⦄w
= J (L uσ1 M′{L vσ′2 M/x})Φ Kw
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2. Same for other cases.

– Otherwise, if L @(U, τ) M = @(LU M, L τ M) −→β,µ t
′, then either LU M −→β,µ u

′

or L τ M −→β,µ τ
′. Suppose L U M −→β,µ u

′.

By induction hypothesis:

J L U M Kw = J L Uσ1 M′Φ Kw

= L U Mwσ1⦃ Φ ⦄w
−→+

β,µ J u′ Kw

Therefore,

J L T M Kw = @(J L Uσ1 M′ Kw, J L τσ2 M′ Kw)⦃ Φ ⦄w
= @(J L Uσ1 M′ Kw⦃ Φ ⦄w, J L τσ2 M′ Kw⦃ Φ ⦄w)

= @(L U Mwσ1⦃ Φ ⦄w, J L τσ2 M′ Kw⦃ Φ ⦄w)

−→+
β,µ @(J u′ Kw, J L τ M Kw)

• Let T = Ax.U . If L T M −→β,µ t
′, then L U M −→β,µ u

′, where t′ = Ax.u′. Then:

J LAx.U M Kw = JAx.L U M Kw

= Ax.J L U M Kw

−→+
β,µ Ax.J u′ Kw

= JAx.u′ Kw

The lemma below is the main result that shows Theorem 4.2.3, stating that a (β, µ)-

reduction in the atomic calculus corresponds to at least a (β, µ)-reduction in the weak-

ening calculus.

Lemma 4.2.2 (J−Kw strictly preserves β, µ-reductions). Let t ∈ ΛµSa. If t −→β,µ t
′

then J t Kw −→+
β,µ J t′ Kw.
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t ∈ ΛµSa J t Kw ∈ ΛµSw

4.2.2
=⇒

t′ J t′ Kw

β,µ β,µ

+

Proof. By induction on t.

• If t is a redex:

– If t = (λx.u)v −→β u{v/x} = t′. Then

J t Kw = (λx.J u Kw)J v Kw

−→β J u Kw{J v Kw/x}
= J t′ Kw

– The other cases are similar.

• If t = @(u, τ) −→β,µ @(u′, τ) = t′. By induction hypothesis,

J u Kw −→+
β,µ J u′ Kw

Therefore

J t Kw = @(J u Kw, J τ Kw) −→+
β,µ @(J u′ Kw, J τ Kw) = J t′ Kw

The proof is similar if t = @(u, τ) −→β,µ @(u, τ ′) = t′.

• If t = Ax.u −→β,µ Ax.u′ = t′. By induction hypothesis,

J u Kw −→+
β,µ J u′ Kw

Therefore

J t Kw = Ax.J u Kw −→+
β,µ Ax.J u′ Kw = J t′ Kw

• If t∗ = u∗[φ] −→β,µ u
∗′[φ] = t∗′. By induction hypothesis,

J u∗ Kw −→+
β,µ J u∗′ Kw
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Therefore

J t∗ Kw = J u∗ Kw⦃ φ ⦄w
−→+

β,µ J u∗′ Kw⦃ φ ⦄w

= J t∗′ Kw

• If tp = 〈 u1, . . . , ui, . . . , up 〉 −→β,µ 〈 u1, . . . , u
′
i, . . . , up 〉 = t′p.

By induction hypothesis

J ui Kw −→+
β,µ J u′i Kw

Therefore

J tp Kw = 〈 J u1 Kw, . . . , J ui Kw, . . . , J up Kw 〉
−→+

β,µ 〈 J u1 Kw, . . . , J u′i Kw, . . . , J up Kw 〉
= J t′p Kw

• If p 6= 0 and

[φ] = [ ~χp ← τ ] −→β,µ [ ~χp ← τ ′] = [φ′]

By induction hypothesis

J τ Kw −→+
β,µ J τ ′ Kw

Therefore

⦃ φ ⦄w = ⦃ J τ Kw/χp ⦄w
−→+

β,µ {J τ ′ Kw/χp}
= ⦃ φ′ ⦄w

• If [φ] = [← τ ] −→β,µ [← τ ′] = φ′. By induction hypothesis

J τ Kw −→+
β,µ J τ ′ Kw

Therefore

⦃ φ ⦄w = (← J τ Kw)

−→+
β,µ (← J τ ′ Kw)

= ⦃ φ′ ⦄w
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• If p 6= 0 and

[φ] = [ ~xp � Ay.〈 ~up 〉[Ψ]] −→β,µ [ ~xp � Ay.〈 ~u′p 〉[Ψ′]] = [φ′]

By induction hypothesis

J 〈 ~up 〉[Ψ] Kw −→+
β,µ J 〈 ~u′p 〉[Ψ′] Kw

⦃ φ ⦄w = {Ay.J ui[Ψ] Kw/xi}
−→+

β,µ {Ay.J u′i[Ψ′] Kw/xi}
= ⦃ φ′ ⦄w

• If [φ] = [� Ay.〈 〉[Ψ]] −→β,µ [� Ay.〈 〉[Ψ′]] = [φ′]

By induction hypothesis

J 〈 〉[Ψ] Kw −→+
β,µ J 〈 〉[Ψ′] Kw

⦃ φ ⦄w = {•/y}⦃ Φ ⦄w
−→+

β,µ {•/y}⦃ Φ′ ⦄w

= ⦃ φ′ ⦄w

We can now show that J−Kw takes an infinite path of the atomic calculus to an infinite

path in the weakening calculus.

Theorem 4.2.3 (J−Kw preserves non-termination). Let T ∈ ΛµSa. If LT M has an infinite

reduction path, then J L T M Kw = L T Mw ∈ ΛµSw has an infinite reduction path.

L T M ∈ ΛµSa J L T M Kw = L T Mw ∈ ΛµSw

4.2.3
=⇒

∞ ∞

Proof. Let T ∈ ΛµS. Suppose that L T M has an infinite reduction path. Since sharing
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reductions are strongly normalizing, there must be an infinite (β, µ) path from LT M. By

Lemma 4.2.1, if LT M −→β,µ t
′, then JL T MKw −→+

β,µ Jt′ Kw. From Jt′ Kw, by Lemma 4.2.2,

we know that one (β, µ) step in the atomic calculus corresponds to at least one (β, µ)

step in the weakening calculus. Therefore J L T M Kw has a (β, µ) infinite path.

4.3 PSN for ΛµSw: exhaustive strategy

In the atomic calculus, reductions can occur inside weakenings, and in particular infinite

β or µ-reductions can occur. The construction of an infinite reduction path in the ΛµS-

calculus from an atomic infinite reduction path thus becomes difficult. Reductions

inside weakenings correspond to zero steps in the ΛµS-calculus, therefore an atomic

term t that is not strongly normalizing does not imply that its interpretation J t K does

not terminate. For instance, take x[← Ω] ∈ ΛµSa, where Ω is the usual diverging term.

This term has an infinite path, but its interpretation Jx[← Ω]K = x ∈ ΛµS is in normal

form. We then must show that this problem doesn’t occur with atomic terms which

are translations L T M of ΛµS-terms T . In particular, we can show that if we end up

with an infinite reduction inside a weakening in the atomic calculus, we could have kept

this reduction outside the weakening as well, hence also in the ΛµS-calculus. In our

example, x[← Ω] comes from reducing (λy.x[← y])Ω, in which the infinite reduction on

Ω could have stayed outside. Proving this aspect in the atomic calculus would be quite

intricate because of the many syntactic constructs, so we will use the ΛµS-calculus

with only explicit weakenings to show this.

In this section, for the sake of simplicity, expressions of the weakening calculus are

referred to as weakening terms T ∈ ΛµSw.

Recall that PSN is split into two parts. We have shown in Theorem 4.2.3 that J−Kw
preserves non-termination. The other part is shown here, and requires a different proof.

Unfortunately, we cannot prove that one reduction step in the weakening calculus ΛµSw

corresponds to at least one step in the ΛµS-calculus. There are several obstacles coming

from reductions inside weakenings. We thus work on weakening translations L T Mw of

ΛµS-terms. However, we still cannot directly construct a reduction in the ΛµS-calculus:

T −→ T1 −→ T2 −→ . . .

from one in the weakening calculus:

L T Mw −→ w1 −→ w2 −→ . . .
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since again, reductions inside weakenings can happen for some wn. To solve that

problem, we show that if we have an infinite path:

L T Mw −→ w1 −→ w2 −→ . . .

we can choose an alternative path:

L T Mw −→ p1 −→ p2 −→ . . .

following a different strategy. We first use an important result (Corollary 4.3.10) in the

weakening calculus, stating that a weakening term is weakly β/µ-normalizing if and

only if it is β/µ-strongly normalizing. That is, without garbage disposal (i.e. weakening

removals), we cannot avoid infinite reductions. From there, we design an exhaustive

strategy that necessarily gives an infinite path if it exists, and keeps infinite reductions

outside of weakenings. Then interpreting back in the ΛµS-calculus, we get:

T = bL T Mwc −→ bp1c −→ bp2c −→ . . .

The strategy we use is close to call-by-value, evaluating the argument first. Now if a

ΛµS-term T is strongly normalizing, we can show that the exhaustive strategy of LT Mw
terminates.

L T Mw ∈ ΛµSw T ∈ ΛµS

L T1 Mw ∈ ΛµSw T1

. . . . . .

β,µ +

L−Mw

β,µ

We show in Section 5.2.1 that −→w is strongly normalizing. As a consequence, if a

weakening term T ∈ ΛµSw has an infinite reduction path, the path looks like:

T −→µ,β T
′
1 −→∗w T1 −→µ,β . . .

with a finite number of w-steps between an infinite number of β or µ-steps. Thus, if

T ∈ ΛµSw has an infinite reduction path, it has an infinite β, µ reduction path.

Each redex duplication produces a finite number of copies. To keep track of the dupli-

cations from T ∈ ΛµSw, we annotate T with labelings. These labelings will be used to
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show that for a weakening term that has finite and infinite reductions, normalization

can only happen from weakening reductions.

Definition 4.3.1. [Labeling] Let T ∈ ΛµSw. A labeling of T puts a • marker on an

arbitrary number of β/µ-redexes in T , which are written (Ax.M)•N .

We then evaluate the labeled redexes and inductively obtain a labeled reduct of an

expression T ∈ ΛµSw:

Definition 4.3.2. [Labeled reduct] A labeled reduct T •
→

of T ∈ ΛµSw is obtained as

follows:

χ •→ = χ

(Ax.M) •
→

= Ax.M •→

((λx.M)•N) •
→

= M •→ {N •→ /x}
((λx.M)•(N ◦ S)) •

→
= (M •→ {N •→ /x})S •→

((µβ.M)•N) •
→

= µβ.M •→ {(N •→ ◦ β)/β}
((µβ.M)•S) •

→

= M •→ {S •→ /β}
(M [← N ]) •

→

= M •→ [← N •
→

]

@(M,N) •
→

= @(M •→ , N •→ ) if M is unlabeled

Remark 4.3.3. Inductively, we have (M{N/χ}) •→ = (M •→ {N •→ /χ}).

The translation from M to its labeled reduct M •→ can be seen as a parallel reduction

step, which consists of a finite number of β, µ reductions on the labeled redexes.

Definition 4.3.4. The parallel reduction step M −→•β,µ M •→ reduces M ∈ ΛµSw to its

labeled reduct M •→ .

We now show that if M ∈ ΛµSw is labeled, and M −→β,µ N , then its labeled reduct

M •→ eventually reduces to N •
→

.

Lemma 4.3.5. Let M ∈ ΛµSw be labeled. If M −→β,µ N and the redex that has been

reduced is labeled, then M •→ = N •
→

. Otherwise M •→ −→+
β,µ N

•→ .

Proof. By induction on the reduction M −→β,µ N .

• M = (λx.T )U −→β,µ N = T{U/x}:
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– If M = (λx.T )•U −→β,µ N = T{U/x}, then:

M •→ = ((λx.T )•U) •
→

= T •
→ {U •→ /x}

Then, N •
→

= (T{U/x}) •→ = T •
→ {U •→ /x} = M •→ .

– Otherwise, M •→ = (λx.T •
→

)U •
→ −→β,µ T

•→ {U •→ /x} = N •
→

.

• M = (λx.T )(U ◦ S) −→β,µ N = (T{U/x})S:

– If M = (λx.T )•(U ◦ S) −→β,µ N = (T{U/x})S, then:

M •→ = ((λx.T )•(U ◦ S)) •
→

= (T •
→ {U •→ /x})S •→

Then N •
→

= ((T{U/x})S) •
→

= (T •
→ {U •→ /x})S •→ = M •→ .

– Otherwise, M •→ = (λx.T •
→

)(U •
→ ◦ S •→ ) −→β,µ (T •
→ {U •→ /x})S •→ = N •
→

.

• M = (µβ.T )U −→β,µ N = µβ.T{(U ◦ β)/β}

– If M = (µβ.T )•U −→β,µ N = µβ.T{(U ◦ β)/β}, then:

M •→ = ((µβ.T )•U) •
→

= µβ.T •
→ {(U •→ ◦ β)/β}

Then N •
→

= (µβ.T{(U ◦ β)/β}) •→ = µβ.T •
→ {(U •→ ◦ β)/β} = M •→ .

– Otherwise, M •→ = (µβ.T •
→

)U •
→ −→β,µ µβ.T

•→ {(U •→ ◦ β)/β} = N •
→

.

• M = (µβ.T )S −→β,µ N = T{S/β}

– If M = (µβ.T )•S −→β,µ N = T{S/β}:

M •→ = ((µβ.T )•S) •
→

= T •
→ {S •→ /β}

Then N •
→

= (T{S/β}) •→ = T •
→ {S •→ /β}.

– Otherwise, M •→ = (µβ.T •
→

)S •→ −→β,µ T

•→ {S •→ /β} = N •
→

.

• If M = Ax.T −→β,µ N , then N = Ax.T ′ where T −→β,µ T ′. By induction

hypothesis, either the reduced redex is labeled and T •
→

= T ′ •
→

or T •
→ −→+

β,µ T
′ •→ .

By definition, M •→ = Ax.(T •→ ) and N •
→

= Ax.(T ′ •→ ), therefore we can conclude.

• If M = @(T,U) −→β,µ N = @(T ′, U ′) then either M = @(T,U) −→β,µ @(T ′, U)

or M = @(T,U) −→β,µ @(T,U ′).

– Suppose M = @(T,U) −→β,µ N = @(T ′, U). By induction hypothesis,

either the reduced redex is labeled and T •
→

= T ′ •
→

or T •
→ −→+

β,µ T
′ •→ .
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∗ If @(T,U) is unlabeled, then by definition M = (@(T,U)) •
→

= @(T •
→

, U •
→

)

and N = (@(T ′, U)) •
→

= @(T ′ •
→

, U •
→

). By induction hypothesis, T •
→ −→+

β,µ

T ′ •
→

and we can conclude.

∗ If @(T,U) is labeled and T = λx.V , then T ′ = λx.V ′ and M •→ =

V •
→ {U •→ /x}, also N •
→

= V ′ •
→ {U •→ /x}, and M •→ −→β,µ N

•→ .
∗ The other cases whenever M is an abstraction are similar.

– Suppose M = @(T,U) −→β,µ N = @(T,U ′).

∗ If @(T,U) is unlabeled, then by definition M = (@(T,U)) •
→

= @(T •
→

, U •
→

)

and N = (@(T,U ′)) •
→

= @(T •
→

, U ′ •
→

). By induction hypothesis, U •
→ −→+

β,µ

U ′ •
→

and we can conclude.

∗ If @(T,U) is labeled and T = λx.V , then M •→ = V •
→ {U •→ /x}, also N •
→

=

V •
→ {U ′ •→ /x}, and M •→ −→+

β,µ N .

∗ The other cases whenever M is an abstraction are similar.

• Suppose M = (T [← U ]) −→β,µ N = (T ′[← U ′]).

– If M = (T [← U ]) −→β,µ N = (T ′[← U ]), we have T −→β,µ T ′. By

induction hypothesis, either the reduced redex is labeled and T •
→

= T ′ •
→

or

T •
→ −→+

β,µ T
′ •→ . By definition, M •→ = (T •

→

[← U •
→

]) and N •
→

= (T ′ •
→

[← U •
→

]),

therefore we can conclude.

– M = (T [← U ]) −→β,µ N = (T [← U ′]), we have U −→β,µ U
′. By induction

hypothesis, either the reduced redex is labeled and U •
→

= U ′ •
→

or U •
→ −→+

β,µ

U ′ •
→

. By definition, M •→ = (T •
→

[← U •
→

]) and N •
→

= (T •
→

[← U ′ •
→

]), therefore we

can conclude.

Let M ∈ ΛµSw, such that M has an infinite reduction path. The previous lemma will

be used to show that if M has a finite reduction path, it must come from weakening

rules. It shows that using only β, µ-rules guarantees to find an infinite path if it exists,

i.e. all β, µ reductions paths are infinite or perpetual in the sense of Barendregt [Bar84].

Lemma 4.3.6. Let M ∈ ΛµSw. If M has an infinite β, µ reduction and M −→β,µ N ,

then N has an infinite β, µ reduction.

Proof. Since M −→β,µ N , we can label the redex taking M to N , i.e. M •→ = N . The

infinite reduction path of M looks like:

M = M0 −→β,µ M1 −→β,µ M2 . . .
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Using Lemma 4.3.5, we will show that the following path is infinite:

N = M0

•→ −→∗β,µ M1

•→ −→∗β,µ . . .

where Mi+1

•→ = Mi

•→ if the reduced redex in Mi −→β,µ Mi+1 is labeled, otherwise

Mi

•→ −→+
β,µ Mi+1

•→ . Now consider the parallel reduction step Mi −→•β,µ Mi

•→ . It has a

finite number of steps, therefore there are a finite number of labeled reductions between

two unlabeled reductions. We have the following path for M :

M = M0 −→β,µ M1 −→β,µ M2 . . .

where Mi

•→ = Mi+1 if the reduction Mi −→β,µ Mi+1 is labeled, otherwise Mi −→+
β,µ

Mi+1. Since any sequence of labeled steps

Mi −→β,µ Mi+1 −→β,µ . . . −→β,µ Mi+k

must be finite, in the infinite path of M

M = M0 −→β,µ M1 −→β,µ M2 −→β,µ . . .

there must be an infinite number of unlabeled reductions. Therefore, the sequence

M •→ = M0

•→ −→∗β,µ M1

•→ −→∗β,µ . . .

has infinitely many sequences Mi

•→ −→+
β,µ Mi+1

•→ , so it must be infinite.

Example 4.3.7. Take Ω = (λx.(x)x)λx.(x)x ∈ ΛµSw, which reduces to itself:

Ω −→β W1 −→β W2 −→β · · · −→β Wk = Ω . . .

Consider M = (λx.(λy.y)•x)Ω, which has the reduction sequence:

M −→β M1 = (λx.(λy.y)•x)W1

−→β M2 = (λy.y)•W1

−→β M3 = (λy.y)•W2

−→β M4 = W2

−→β M5 = W3 . . .
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Then M −→β N = (λx.x)Ω = M •→ , and:

N −→β M1

•→ = (λx.x)W1

−→β M2

•→ = W1

−→β M3

•→ = W2

= M4

•→ = W2

−→β M5

•→ = W3

Example 4.3.8. Take Ω and its reduction sequence from the previous example. Consider

M = (λx.(x)x)((λy.y)•Ω), which has the reduction sequence:

M −→β M1 = (λx.(x)x)((λy.y)•W1)

−→β M2 = ((λy.y)•W1)((λy.y)•W1)

−→β M3 = (W1)((λy.y)•W1)

−→β M4 = (W1)W1

−→β M5 = (W2)W1 . . .

Then M −→β N = (λx.x)Ω = M •→ , and:

N −→β M1

•→ = (λx.(x)x)W1

−→β M2

•→ = (W1)W1

= M3

•→ = (W1)W1

= M4

•→ = (W1)W1

−→β M5

•→ = (W2)W1

Example 4.3.9. Let T = (λx.y[← x])(δ)δ ∈ ΛµSw where δ = λx.(x)x. Then T has an

infinite reduction on (δ)δ, and reduces to T or U = y[← (δ)δ]), which has an infinite

reduction on (δ)δ.

The following corollary shows that a weakening term with an infinite reduction that is

weakly normalizing can only normalize with weakening reductions.

Corollary 4.3.10. If M ∈ ΛµSw has an infinite β, µ reduction path, then no β, µ reduc-

tion path is finite.
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Proof. Suppose by contradiction that M ∈ ΛµSw has an infinite β, µ reduction path,

and that there is a finite β, µ reduction path from M :

M = M0 −→β,µ M1 . . . −→β,µ Mn

Using Lemma 4.3.6, if M reduces to M1, then M1 has an infinite β, µ reduction. In-

ductively, Mn−1 reduces to Mn which has an infinite reduction path, thus cannot be in

normal form, which is a contradiction.

Example 4.3.11. Considering T = (λx.y[← x])(δ)δ ∈ ΛµSw, any β, µ reduction path

will infinitely reduce (δ)δ.

We showed that if a weakening term has an infinite reduction, then any path only

involving β, µ-reductions is infinite. We now want to define a particular exhaustive

strategy in ΛµSw that never involves reductions inside weakenings. That way, trans-

lating back to the ΛµS-calculus, we get an infinite reduction path. Let M ∈ ΛµSw be

a weakening term.

Definition 4.3.12. The call-by-value-like exhaustive strategy on M ∈ ΛµSw is the

reduction sequence

M = M1 −→β,µ M2 −→β,µ M3 −→β,µ . . .
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where Mi+1 = ρ(Mi), such that

ρ(•) = •
ρ(χ) = χ

ρ(Ax.N) = Ax.ρ(N)

ρ(@(N,P )) =



@(N, ρ(P )) if P not in NF

T{P/x}[Φ] if N = (λx.T )[Φ]

and P in NF

((T{Q/x})[Φ])S if N = (λx.T )[Φ], P = Q ◦ S,
and P in NF

µβ.T{(P ◦ β)/α}[Φ] if N = (µα.T )[Φ],

and P in NF

T{S/α}[Φ] if N = (µα.T )[Φ], P = S,
and P in NF

@(ρ(N), P ) if N 6= (Ax.T )[Φ] and P in NF

ρ(N [← P ]) =

{
ρ(N)[← P ] if N not NF

N [← ρ(P )] otherwise

such that M is in (ρ-)normal form (NF) if ρ(M) = M .

If we start from the translation of a lambda-mu term, with this exhaustive strategy, we

never reduce inside weakenings. The typical situation we want to avoid is (λx.M [←
(x)δ])δ −→β M [← Ω]. In the ΛµS-calculus bM [← Ω]c = bMc, so we would have an

infinite path in the weakening calculus but not in the ΛµS-calculus. Since we start from

translations of ΛµS-expressions, this situation (having weakenings other than [← χ])

cannot happen.

We show that using exhaustive reduction, the only kind of weakenings we obtain are

either [← χ] or [← T ] where T cannot be reduced or help form a redex. In the latter case

T is called frozen. We first define frozen abstraction constructors inside an expression

M , which are constructors that remain untouched after all possible reductions.

Definition 4.3.13. An abstraction constructor Ax in M ∈ ΛµSw is frozen if:

• M = Ax.N

• M = Ay.N where y 6= x and Ax is frozen in N

• M = @(N,P ) and M is not a redex, N is normal, Ax is frozen in N or P
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• M = N [← P ] and Ax is frozen in N or P

Example 4.3.14. Consider λy in M = ((λz.λk.(k)z)x)λy.y. The term M is not a redex,

but reduces to (λk.(k)x)λy.y, then λy participates in a redex, therefore is not frozen.

Definition 4.3.15. A variable χ in M is frozen if Aχ is a frozen abstraction of M . A

subexpression N 6= χ of M is frozen if its variables are either free or frozen, and if it is

in normal form.

Example 4.3.16. Let δ = λy.(y)y. Consider N = (λx.M [← (x)δ]). λx is frozen in N ,

therefore x is frozen in N . Also, λy is frozen in δ, so y is frozen in N . Therefore (x)δ

is frozen in N .

If an abstraction Ax is frozen in M , its bound variable x remains untouched and never

participates in a redex. Therefore, if an expression has no redexes and only free or

frozen variables, it can never become or participate in a redex either. We now show

that with exhaustive reductions, only frozen expressions or variables can appear inside

weakenings.

Definition 4.3.17. Let M ∈ ΛµSw. We say that M is cool if for any weakening [← F ]

in M , either F = χ or F 6= χ is frozen.

As stated before, with the translation of a ΛµS-expression, only weakenings of the form

[← χ] appear, therefore for any T ∈ ΛµS, its translation L T Mw is cool. We now show

that from L T Mw, applying exhaustive reduction preserves coolness.

Lemma 4.3.18. Let M ∈ ΛµSw. If M is cool, then ρ(M) is cool.

Proof. Let M ∈ T, τ ∈ T ∪ S.

1. • = ρ(•), χ = ρ(χ) are cool and in normal form.

2. Let Ax.M be cool. Then ρ(Ax.M) = Ax.ρ(M). By definition M is cool, and by

induction hypothesis ρ(M) is cool, thus ρ(Ax.M) is cool.

3. Let M = @(N, τ) be cool. By definition, N and τ are cool.

• If N = (λx.T )[Φ], and τ is in normal form, then ρ(M) = T{τ/x}[Φ].

(a) Since M is cool, and the abstraction λx is not frozen, for every weak-

ening [← τ ′] in M we have either x = τ ′ or x 6∈ FV (τ ′). We now show

that τ is frozen.
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– If τ is a variable, it is frozen.

– If there are only free variables in τ , then τ is frozen.

– If χ′ is a bound variable of τ , it is bound to an abstraction Aχ′,
which is frozen.

Therefore, τ is frozen. Therefore, any weakening in ρ(M) is either a

weakening in M or [← τ ] which is frozen, then ρ(M) is cool.

(b) Otherwise, there are no new weakenings formed, so ρ(M) stays cool.

• The reasoning is similar for other redexes.

• In the remaining cases for applications, we have ρ(@(N, τ)) = @(ρ(N), τ)

and ρ(@(N, τ)) = @(N, ρ(τ)), then we can conclude by induction hypothesis.

4. Let M = N [← τ ] be cool. By definition, N and τ are cool, and τ is frozen.

• ρ(M) = ρ(N)[← τ ] if N is not in normal form. By induction, ρ(N) is cool,

therefore ρ(M) is cool.

• ρ(M) = N [← ρ(τ)] otherwise. By induction ρ(τ) is cool. Also, τ is frozen

i.e. each variable is either free or bound to a frozen abstraction, and that is

preserved after applying ρ(τ). Note that since τ is frozen (M being cool), it

is in normal form and ρ(τ) = τ .

The following lemma, along with Lemma 4.1.5, shows that the correspondence between

β, µ-steps in ΛµSa,ΛµSw,ΛµS works with the interpretation functions J−K, J−Kw, b−c,
but not with the translations L−M, L−Mw.

Lemma 4.3.19. For t ∈ ΛµSa, bJ t Kwc = J t K.

t ∈ ΛµSa J t Kw ∈ ΛµSw

J t K ∈ ΛµS bJ t Kwc ∈ ΛµS

J−K

J−Kw

b−c

Proof. Let χ be a variable, τ be a term or a stream. By induction on t.

• If t = χ, then:

bJ χ Kwc = χ = J χ K
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• If t = Ax.u, then:

bJAx.u Kwc = Ax.bJ u Kwc
= Ax.J u K

= JAx.u K

• If t = @(u, τ), then:

bJ @(u, τ) Kwc = b@(J t Kw, J τ Kw)c
= @(bJ t Kwc, bJ τ Kwc)
= @(J t K, J τ K)

= J @(t, τ) K

• If t = u∗[φ], then:

bJ u∗[φ] Kwc = bJ u∗ Kw⦃ φ ⦄wc
= bJ u∗ Kwcb⦃ φ ⦄wc
= J u∗ Kb⦃ φ ⦄wc
= J u∗ K⦃ φ ⦄

= J u∗[φ] K

• For sharings:

b⦃ ~χp ← τ ⦄wc =


b[← J τ Kw]c = ∅ = ⦃← τ ⦄ if p = 0

b{J τ Kw/χi}1≤i≤pc = {bJ τ Kwc/χi}1≤i≤p
= {J τ K/χi}1≤i≤p = ⦃ ~χp ← τ ⦄ if p ≥ 1
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•

b⦃ ~xp � Ay.〈 ~tp 〉[Ψ] ⦄wc =



b⦃ Ψ ⦄w{•/y}c = b⦃ Ψ ⦄wc{•/y}
= ⦃ Ψ ⦄{•/y} if p = 0

b{Ay.J ti[Ψ] Kw/xi}1≤i≤pc
= {Ay.bJ ti[Ψ] Kwc/xi}1≤i≤p
= {Ay.J ti[Ψ] K/xi}1≤i≤p
= {JAy.ti[Ψ] K/xi}1≤i≤p if p ≥ 1

We can now conclude with PSN for the weakening calculus:

Theorem 4.3.20 (PSN for the weakening calculus). Let T ∈ ΛµS. If L T Mw has an

infinite reduction path, then T has an infinite reduction path.

L T Mw ∈ ΛµSw T ∈ ΛµS

4.3.20
=⇒

∞ ∞

Proof. We work on the contrapositive. We suppose that for T ∈ ΛµS, its translation

L T Mw ∈ ΛµSw has an infinite reduction. Since weakening reductions are strongly

normalizing (Theorem 5.2.8), we can skip them, i.e. LT Mw has an infinite β, µ reduction

path. Then starting from LT Mw, we always get an infinite reduction with β, µ reductions,

by Corollary 4.3.10.

Going back to ΛµS, we always have:

M ∈ ΛµSw bMc ∈ ΛµS

N ∈ ΛµSw bNc ∈ ΛµS

β/µ (β/µ)∗

where bMc = bNc if M −→β,µ N inside a weakening, and bMc −→β,µ bNc otherwise.

Using the exhaustive strategy, we get a particular infinite path, which consists of only

cool terms. Therefore, we get a path where reductions never happen inside weakenings.
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In the weakening calculus, for a step M −→β,µ N that is not inside a weakening:

M ∈ ΛµSw bMc ∈ ΛµS

N ∈ ΛµSw bNc ∈ ΛµS

β/µ β/µ

Going back to ΛµS, using bL T Mwc = T by Lemma 4.3.19, we get an infinite path from

T .
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Chapter 5

Strong normalization of sharing

reductions

Strong normalization of sharing reductions is the other core lemma to prove preser-

vation of strong normalization, stating that solely β, µ reductions are responsible for

divergence. To show that −→s is strongly normalizing, we construct a measure that

strictly decreases after each reduction. Several parameters can decrease during the

reduction:

• A reduction concerns a weakening reduction, which is strongly normalizing since

terms become strictly smaller.

• The weight of subexpressions of a term, which gathers multisets representing the

number of copies of subexpressions.

• The number of closures.

• The depths of subexpressions of a term, which gathers multisets representing the

paths to the closures inside the term.

5.1 Preliminaries on multisets

Definition 5.1.1. [Multiset] A multiset m on a set A is a function

m : A→ N

a 7→ m(a)
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Remark 5.1.2. 1. The multiset m on A can be seen as a set where elements of A

may appear several times. For each element a ∈ A, m(a) denotes the number of

occurrences (or multiplicity) of a.

2. As with any function, it is also possible to define m with its graph, a set {am(a) |
a ∈ A}, where we omit a0.

Example 5.1.3. Looking at the integer factorization of 120, we have 120 = 2∗2∗2∗3∗5,

which can be represented (following the second notation) by the multiset {23, 31, 51} =

{23, 3, 5}.
Remark 5.1.4. The empty multiset is written ∅.

Definition 5.1.5. The sum (or union) f + g of two functions f and g with the same

domain A is the function

f + g : A→ N

a 7→ f(a) + g(a)

equivalently f + g = {af(a)+g(a) | a ∈ A}.

Remark 5.1.6. This definition extends to multisets m,n : A→ N.

Example 5.1.7. The union {23, 3, 5}+ {33} gives {23, 34, 5}.

Definition 5.1.8. The inclusion relation between two multisets m,n on A → N is

defined by:

m ⊆ n if for any x ∈ A, m(x) ≤ n(x)

Definition 5.1.9. If A can be equipped with a partial (strict) order <A, an order (as

in [JL82]) can be defined for multisets over A: m ≺ n if:

1. m 6= n

2. ∀x ∈ A. m(x) > n(x) =⇒ ∃z ∈ A. z >A x ∧ m(z) < n(z).

Definition 5.1.10. A finite multiset m is a multiset where there is a finite number

of elements a ∈ A such that m(a) 6= 0. We denote by Mf (A) the collection of finite

multisets over A.
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For a multiset f : A→ N, and x1, . . . , xp ∈ A, we denote by f\x1, . . . , xp the multiset

f with all copies of each xi removed:

(f\x1, . . . , xp)(y) =

{
0 if y = xi for some 1 ≤ i ≤ p
f(y) otherwise

5.2 Weakening reduction as a measure

The following theorem shows that a sharing reduction corresponds to zero or more

steps in the weakening calculus. We will show the strong normalization of weakening

reductions −→w, along with this theorem, to construct a strictly decreasing measure

for the strong normalization of sharing reductions, the first parameter of the measure

being a reduction occurring in the weakening calculus.

Theorem 5.2.1 (J−Kw commutes with −→s). Let s∗, t∗ ∈ ΛµSa such that s∗ −→s t
∗.

Then J s∗ Kw −→∗w J t∗ Kw.

Remark 5.2.2. Here, substitution and parallel substitutions are the same since all oc-

currences of variables are linear. Let τ ∈ T ∪ S be a term or a stream, let χi ∈ T ∪ S

be variables.

Whenever a reduction rule in the atomic calculus does not involve a weakening, the

translation in the weakening calculus corresponds to that in the ΛµS-calculus, thus a

s-reduction corresponds to 0 weakening reductions.

Proof. We show the correspondence for each rule.

Compounding rules

[← χi][χ1, . . . , χq ← τ ] −→s [χ1, . . . , χi−1, χi+1, . . . , χq ← τ ]

⦃ [← χi][χ1, . . . , χq ← τ ] ⦄w = [← χi]{J τ Kw/ ~χq}
= [← J τ Kw]{J τ Kw/χ1, . . . , χi−1, χi+1, . . . , χq}
−→w ⦃ χ1, . . . , χi−1, χi+1, . . . , χq ← τ ⦄w

since J τ Kw becomes a subexpression.

Lifting rules

1. Lifting inside abstractions (similar for applications)
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(a)

Ax.(u[← τ ]) −→s (Ax.u)[← τ ]

JAx.(u[← τ ]) Kw = Ax.(J u Kw[← J τ Kw])

−→w (Ax.J u Kw)[← τ ]

= J (Ax.u)[← τ ] Kw

(b)

Ax.(u[� Ay.〈 〉[Ψ]]) −→s (Ax.u)[� Ay.〈 〉[Ψ]]

JAx.(u[� Ay.〈 〉[Ψ]]) Kw = Ax.(J u Kw⦃ Ψ ⦄w{•/y})
= JAx.u Kw⦃ Ψ ⦄w{•/y}
= J (Ax.u)[� Ay.〈 〉[Ψ]] Kw

2. Lifting sharings inside sharings

(a)

[← τ [← τ ′]] −→s [← τ ][← τ ′]

[← J τ Kw[← J τ ′ Kw]] −→w [← J τ Kw][← J τ ′ Kw]

(b) Consider the reduction

t∗[ ~χp ← s∗[← u∗]] −→s t
∗[ ~χp ← s∗][← u∗]

Let

T ∗ = J t∗ Kw, S∗ = J s∗ Kw, U∗ = J u∗ Kw

Then we have

⦃ [ ~χp ← s∗[← u∗]] ⦄w = {S∗[← U∗]/χi}i≤p

where [← U∗] appears p times inside T ∗, whereas

⦃ [ ~χp ← s∗][← u∗] ⦄w = {S∗/χi}i≤p[← U∗]

where [← U∗] appears once at top-level. Since t∗ (resp. T ∗) does not bind

variables in u∗ (resp. U∗), lifting rules can be applied to [← u∗] (resp.
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[← U∗]), and these sharings can be lifted to the top-level. In the weakening

calculus, we have T ∗{S∗[← U∗]/χi}i≤p −→∗w T ∗{S∗/χi} [← U∗] . . . [← U∗]︸ ︷︷ ︸
n

.

Since U∗ appears as a subterm, we can remove all weakenings [← U∗] except

the first one. It is possible to have 0 weakening steps, for instance consider

χ[χ← s∗[← u∗]].

[ ~χp ← τ [← τ ′]] −→s [ ~χp ← τ ][← τ ′]

⦃ ~χp ← τ [← τ ′] ⦄w = {J τ [← τ ′] Kw/ ~χp}
−→∗w {J τ Kw/ ~χp}[← J τ ′ Kw]

= ⦃ [ ~χp ← τ ][← τ ′] ⦄w

since τ ′ becomes a subterm.

3. Lifting distributors inside sharings

(a)

[← τ [� Ay.〈 〉[Ψ]]] −→s [← τ ][� Ay.〈 〉[Ψ]]

⦃ [← τ [� Ay.〈 〉[Ψ]]] ⦄w = [← J τ Kw⦃ Ψ ⦄w{•/y}]
= [← J τ Kw]⦃ Ψ ⦄w{•/y}
= ⦃ [← J τ Kw][� Ay.〈 〉[Ψ]] ⦄w

(b) In this case, we get p copies of ⦃Ψ⦄w that we can annotate ⦃Ψ1⦄w, . . . , ⦃Ψp⦄w
on the LHS, and one copy on the RHS. Substitutions can occur inside weak-

enings, so we consider each ⦃ Ψi ⦄w, from p to 1. We proceed as follows:

i. if ⦃ Ψi ⦄w is a substitution, then LHS and RHS are equal

ii. if ⦃ Ψi ⦄w is a weakening [← U∗], we need to lift all instances of [← U∗]

to the top-level, then delete any duplicates.

Whenever we have a lifting from non-weakening closures, we apply a similar

reasoning.

[ ~χp ← τ [� Ay.〈 〉[Ψ]]] −→s [ ~χp ← τ ][� Ay.〈 〉[Ψ]]

{(J τ Kw⦃ Ψ ⦄w{•/y})/ ~χp} −→∗w {J τ Kw/ ~χp}⦃ Ψ ⦄w{•/y}

4. Lifting sharings inside distributors
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(a)

[� Ay.〈 〉[Ψ][← τ ]] −→s [� Ay.〈 〉[Ψ]][← τ ]

⦃� Ay.〈 〉[Ψ][← τ ] ⦄w = ⦃ Ψ ⦄w{•/y}[← J τ Kw]

= ⦃ [� Ay.〈 〉[Ψ]][← τ ] ⦄w

(b) Similar reasoning as other lifting cases from non-weakening closures.

[ ~χp � Ay.〈 ~τp 〉[Ψ][← τ ′]] −→s [ ~χp � Ay.〈 ~τp 〉[Ψ]][← τ ′]

⦃ ~χp � Ay.〈 ~τp 〉[Ψ][← τ ′] ⦄w =

{(Ay.J τj Kw⦃ Ψ ⦄w[← J τ ′ Kw])/χj}j≤p
−→∗w {(Ay.J τj Kw⦃ Ψ ⦄w)/χj}j≤p[← J τ ′ Kw]

since τ ′ becomes a subexpression.

5. Lifting distributors inside distributors

(a)

[� Ay.〈 〉[Ψ][� Az.〈 〉[Θ]]] −→s [� Ay.〈 〉[Ψ]][� Az.〈 〉[Θ]]

⦃� Ay.〈 〉[Ψ][� Az.〈 〉[Θ]] ⦄w = ⦃ Ψ ⦄w{•/y}⦃ Θ ⦄w{•/z}
= ⦃ [� Ay.〈 〉[Ψ]][� Az.〈 〉[Θ]] ⦄w

(b) Similar reasoning as other lifting cases from non-weakening closures.

[ ~χp � Ay.〈 ~τp 〉[Ψ][� Az.〈 〉[Θ]]] −→s

[ ~χp � Ay.〈 ~τp 〉[Ψ]][� Az.〈 〉[Θ]]

⦃ ~χp � Ay.〈 ~τp 〉[Ψ][� Az.〈 〉[Θ]] ⦄w =

{(Ay.J τj Kw⦃ Ψ ⦄w⦃ Θ ⦄w{•/z})/χj}
−→∗w {(Ay.J τj Kw⦃ Ψ ⦄w)/χj}⦃ Θ ⦄w{•/z}

= ⦃ [ ~χp � Ay.〈 ~τp 〉[Ψ]][� Az.〈 〉[Θ]] ⦄w

Duplication rules

1.

[← @(t, τ ′)] −→s [← t][← τ ′]

[← J @(t, τ ′) Kw] −→w [← J t Kw][← J τ ′ Kw]
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2.

[← Ax.t] −→s [� Ax.〈 〉[← t]]

[← Ax.J t Kw] −→w [← J t Kw]{•/x}

3.

u∗[� Ay〈 〉[← y]] −→s u
∗

J u∗ Kw[← •] −→w J u∗ Kw

5.2.1 Measuring weakening reductions

To show that weakening reductions in the weakening calculus are strongly normalizing,

a measure can be constructed. The first component is the size of a term, the second

component is the depth of a term which gathers multisets representing the paths to the

sharings inside the term. Note that in the case of T ∗[← U∗], we consider T ∗ to stay

at the same depth as T ∗[← U∗] because of the congruence rule. If T ∗ = W ∗[φ][ψ] ∼
W ∗[ψ][φ], the path to these closures should be of the same length.

Let T ∗, U∗ ∈ ΛµSw be terms or streams, let χ be a variable.

Definition 5.2.3. [Size] The size has signature:

σ : ΛµSw︸ ︷︷ ︸
term or stream t∗

→ N︸︷︷︸
size

and is defined by structural induction on expressions:

• σ(χ) = σ(•) = 1.

• σ(@(T,U∗)) = 1 + σ(T ) + σ(U∗)

• σ(Ax.T ) = 1 + σ(T ).

• σ(T ∗[← U∗]) = σ(T ∗) + σ(U∗)

To get the depth of an expression t∗, we measure ∂(T ∗, 1).
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Definition 5.2.4. [Depth] The depth ∂(T ∗, n) measures a term T ∗ that is at depth n.

It has signature:

∂ : ΛµSw︸ ︷︷ ︸
term or stream t∗

→ N︸︷︷︸
input depth

→ Mf (N)︸ ︷︷ ︸
output depths

We define it by induction on T ∗:

• ∂(χ, n) = ∅.

• ∂(@(T,U∗), n) = ∂(T, n+ 1) + ∂(U∗, n+ 1).

• ∂(Ax.T , n) = ∂(T, n+ 1).

• ∂(T ∗[← U∗], n) = ∂(T ∗, n) + ∂(U∗, n+ 1) + {n}

Lemma 5.2.5 (Monotonicity of depth). For T ∗ ∈ ΛµSw, n ∈ N, ∂(T ∗, n) ≤ ∂(T ∗, n+ 1).

Proof. By induction:

• ∂(χ, n) = ∅ = ∂(χ, n+ 1).

• By induction hypothesis:

∂(@(T,U∗), n) = ∂(T, n+ 1) + ∂(U∗, n+ 1)

≤ ∂(T, n+ 2) + ∂(U∗, n+ 2) = ∂(@(T,U∗), n+ 1)

• By induction hypothesis:

∂(Ax.T , n) = ∂(T, n+ 1)

≤ ∂(T, n+ 2) = ∂(Ax.T , n+ 1)

• By induction hypothesis:

∂(T ∗[← U∗], n) = ∂(T ∗, n) + ∂(U∗, n+ 1) + {n}
≤ ∂(T ∗, n+ 1) + ∂(U∗, n+ 2) + {n+ 1}
= ∂(T ∗[← U∗], n+ 1)

Lemma 5.2.6. For U∗ ∈ ΛµSw, if χ is a variable, σ(U∗{•/χ}) = σ(U∗).
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Proof. The proof follows from the fact that χ and • have the same size.

Lemma 5.2.7. For U∗ ∈ ΛµSw, σ(U∗[← Ax.T ]) > σ(U∗[← T{•/x}]).

Proof. By Lemma 5.2.6, σ(U∗{•/χ}) = σ(U∗). Then:

σ(U∗[← Ax.T ]) = σ(U∗) + σ(Ax.T )

= σ(U∗) + σ(T ) + 1

> σ(U∗) + σ(T{•/x})
= σ(U∗[← T{•/x}])

5.2.2 SN for weakening reduction

We now show that weakening reductions are strongly normalizing, using our measure.

Either the size strictly decreases, or it stays the same and the depth decreases.

Theorem 5.2.8. Weakening reductions are strongly normalizing in ΛµSw.

Proof. • For lifting rules:

1. Ax.(U [← T ∗]) −→w (Ax.U)[← T ∗] if x ∈ FV (U)

σ(Ax.(U [← T ∗])) = 1 + σ(U [← T ∗])

= 1 + σ(U) + σ(T ∗)

σ((Ax.U)[← T ∗]) = σ(Ax.U) + σ(T ∗)

= 1 + σ(U) + σ(T ∗)

∂(Ax.(U [← T ∗]), n) = ∂((U [← T ∗]), n+ 1)

= ∂(U, n+ 1) + ∂(T ∗, n+ 2) + {n+ 1}
∂((Ax.U)[← T ∗], n) = ∂((Ax.U), n) + ∂(T ∗, n+ 1) + {n}

= ∂(U, n+ 1) + ∂(T ∗, n+ 1) + {n}

We conclude with Lemma 5.2.5 (monotonicity), ∂(T ∗, n+ 2) ≥ ∂(T ∗, n+ 1).
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2.
@(U [← V ∗], T ∗)

@(U, T ∗[← V ∗])
−→w @(U, T ∗)[← V ∗]

σ(@(U [← V ∗], T ∗)) = 1 + σ(U) + σ(V ∗) + σ(T ∗)

σ(@(U, T ∗)[← V ∗]) = 1 + σ(U) + σ(T ∗) + σ(V ∗)

∂(@(T [← V ∗], U∗), n) = ∂(T, n+ 1) + ∂(V ∗, n+ 2)

+ {n+ 1}+ ∂(U∗, n+ 1)

∂(@(T,U∗)[← V ∗], n) = ∂(T, n+ 1) + ∂(U∗, n+ 1)

+ {n}+ ∂(V ∗, n+ 1)

3. U∗[← T ∗[← V ∗]] −→w U
∗[← T ∗][← V ∗]

σ(U∗[← T ∗[← V ∗]]) = σ(U∗) + σ(T ∗) + σ(V ∗)

σ((U∗[← T ∗])[← V ∗]) = σ(U∗) + σ(T ∗) + σ(V ∗)

∂(U∗[← T ∗[← V ∗]], n) = ∂(U∗, n) + ∂(T ∗, n+ 1)

+ {n}+ ∂(V ∗, n+ 2) + {n+ 1}
∂((U∗[← T ∗])[← V ∗], n) = ∂(U∗, n) + ∂(T ∗, n+ 1)

+ {n}+ ∂(V ∗, n+ 1) + {n}

• For compounding rules:

1. U∗[← T ∗] −→w U
∗ if T ∗ is a subterm of U∗

σ(U∗[← T ∗]) = σ(U∗) + σ(T ∗) > σ(U∗)

• For duplication rules:

1. U∗[← @(V ∗, T ∗)] −→w U
∗[← V ∗][← T ∗]

σ(U∗[← @(V ∗, T ∗)]) = σ(U∗) + σ(@(V ∗, T ∗))

= σ(U∗) + σ(V ∗) + σ(T ∗) + 1
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σ(U∗[← V ∗][← T ∗]) = σ(U∗[← V ∗]) + σ(T ∗)

= σ(U∗) + σ(V ∗) + σ(T ∗)

2. U∗[← Ax.T ] −→w U
∗[← T{•/x}]

σ(U∗[← Ax.T ]) = σ(U∗) + 1 + σ(T )

σ(U∗[← T{•/x}]) = σ(U∗) + σ(T )

By Lemma 5.2.7.

3. U∗[← •] −→w U
∗

σ(U∗[← •]) = σ(U∗) + 1 > σ(U∗)

5.3 Weight

We now consider our second measure for sharing reductions in the atomic calculus.

The idea behind measuring the weight of an expression is to quantify the remaining

duplications, which are performed with sharing reductions. To give an intuition, take

the term (x1)x2 . . . xp[x1, . . . , xp ← w]. The sharing [x1, . . . , xp ← w] represents p

instances of w, and we obtain p copies of w after unfolding the sharing. The weight p

can thus be assigned inductively to w. For instance, if there are no sharings in w, any

variable of w would also have weight p. In a sharing [χ1, . . . , χp ← w∗], the weight of

the term w∗ corresponds to the sum of the weights of the χi. For weakenings, suppose

t∗[← u∗] has weight n. Since we would still like to measure weights inside u∗, intuitively

we can either consider that u∗ has weight 1 (u∗ can eventually be lifted, so it can be

counted once), or that t∗, u∗ are subterms of t∗[← u∗] that keep the same weight n > 0.

Our definition follows the second choice. We thus also directly measure how many

copies there are of a term when translating into ΛµSw. The weight measure consists

of collecting all weights of all subexpressions in a multiset. For the proof of strong

normalization of −→s, we will show that the measure reduces after a reduction step.

To summarize, in order to compute the weights of a subexpression t∗[ ~χp ← u∗] of weight

n, we:

1. Compute the weights of the χi in t∗

2. For u∗, the weight is the sum of the weights of χi

105



We thus construct a function ω:

• With inputs:

– the expression t∗[ ~χp ← u∗]

– its initial weight n

• With outputs:

– the multiset of weights of all subexpressions

– a function assigning a weight to each free variable

Because we want to measure the copies of a subexpression when translated to ΛµSw,

we don’t measure the weight of variables bound by sharings. More explicitly, for a term

t∗[ ~χp ← u∗] ∈ ΛµSa, in its translation T ∗{U∗/χ1} . . . {U∗/χp} ∈ ΛµSw the variables

χi are substituted for. However, we want to measure variables bound by abstractions,

so free variables are weighed in the second output, and are weighed in the first (main)

measure when they become abstracted over. When measuring Ax.t, we add the weight

of the whole term, and the weight of x in t to the first output measure.

Example 5.3.1. For instance, consider the weight ω(u, 1) for

u = λx.(x1)x2[x1, x2 ← x] = λx.t

We have

ω(xi, 1) = (∅, xi 7→ 1)

Therefore we consider:

ω(x, 2) = (∅, x 7→ 2)

summing the weights of x1 and x2. Counting the application constructor, we have:

ω(t, 1) = ({1}, x 7→ 2)

Then, counting the abstraction constructor and transferring the weight of x to the first

measure, we have:

ω(u, 1) = ({12, 2}, ∅)

Finally for distributors, we consider that the introduction rule

[ ~xp ← Ay.t] −→s [ ~xp � Ay.〈 ~yp 〉[~yp ← t]]
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duplicates abstractions Ay, without copying y yet. This variable is copied when elimi-

nating the distributor

[ ~xp � Ay.〈 ~tp 〉[~yp ← y]] −→s {Ayi.ti[ ~ylii ← yi]/xi}

This can be illustrated with the graphical representation below. An expression t∗ can

be represented as a tree where the nodes are annotated with a weight (denoted by

n, n′, . . . ) intuitively corresponding to the number of “copies” of subexpressions of t∗.

Recall that t∗ denotes a term, a stream or a tuple.

Let τ ∈ T ∪ S be a term or a stream, let χ, χi be variables. In the picture below,

the overlined blue indices represent the weights of each connective, as measured by

the weight function and collected in the first output m, whereas the underlined red

indices give the input weights, but also the output weights to free variables that do not

contribute to the measure. The weight counts the number of copies of free variables χ,

variables bound by A, and function symbols A,@.

χn

An

tn xk

@n

tn τn

un

τ
∑p
i=1 ki

χ
k1
1

χ
kp
p

un

Ak1 Akp

tp
〈 k1,...,kp 〉

x1
k1 xp

kp

yl

Figure 5-1: Graphical representation of weights

To prove the preservation of strong normalization, the weight is the first measure,

composed of a finite multiset m and of a function f , where n represents the weight of

t∗, and p the arity of t∗. For the measure, we solely take into account the first output

m, while f is only used to get the input to recursive calls of the weight function on

shared terms. The signature of the weight function is as follows:

ω : T ∗︸︷︷︸
term, stream, tuple t∗

→ Np︸︷︷︸
arity of t∗

→ (N→ N)︸ ︷︷ ︸
main measure m

× (V → N)︸ ︷︷ ︸
measure of free variables f

= T ∗︸︷︷︸
term, stream, tuple t∗

→ Np︸︷︷︸
arity of t∗

→ Mf (N)︸ ︷︷ ︸
main measure m

× Mf (V)︸ ︷︷ ︸
measure of free variables f

Remark 5.3.2. The set V of free variables is such that V = Vλ t Vµ, where Vλ is a set

of free λ-variables, and Vµ is a set of free µ-variables.
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For any term t, we measure ω(t, 1). A 0-tuple u0 appears in weakened distributors

[� Ay.u0], and its behavior is similar to that of a term or stream τ appearing in a

weakening [← τ ]. For this reason if t∗ is a term, a stream, or a 0-tuple, we consider

that it has arity 1, otherwise a tuple tp has arity p ≥ 2. For a q-term tq we will instead

need ω(tq, ~nq) to separately count the weights of each projection on the i-th element of

tq.

We now define ω(t∗, ~nq) for a term of arity q and of weight ~nq. Figure 5-1 describes

the different cases.

For tuples, we gather the weights of each coordinate of the tuple. Since all occurrences

are linear, it is possible to simply sum all functions. For applications and abstractions,

the constructors A,@ are counted in the weight, then the function is applied recursively

to subterms. For sharings, we sum the weight of sharing variables χi, which corresponds

to the weight of the shared expression τ . Since the variables χi become bound by

the sharing, their weight is removed. For distributors, the weights to count are the

abstraction constructor A, the tuples, and the variable y that becomes abstracted

over. The abstraction Ay.up is distributed to the variables xi (so its weight depends

on each xi), then the function is applied inductively on subterms.

Definition 5.3.3. [Weight] The weight of ΛµSa-expressions is defined as follows:

• ω(χ, n) = (∅, {χn})

• ω(〈 〉, n) = (∅, ∅).

• ω(〈 t1, . . . , tp 〉, n1, . . . , np) = (

p∑
i=1

mi,

p∑
i=1

fi)

for 1 ≤ i ≤ p, where ω(ti, ni) = (mi, fi).

• ω(@(t, τ), n) = (mt +mτ + {n}, ft + fτ )

where ω(t, n) = (mt, ft), and ω(τ, n) = (mτ , fτ ).

• ω(Ax.t, n) = (mt + {n}+ {ft(x)}, ft\x)

where ω(t, n) = (mt, ft).

• ω(t∗[← τ ], n1, . . . , np) = (mt∗ +

p∑
i=1

mi, ft∗ +

p∑
i=1

fi)

where ω(t∗, n1, . . . , np) = (mt∗ , ft∗), and ω(τ, ni) = (mi, fi).

• ω(t∗[χ1, . . . , χp ← τ ], n1, . . . , nq) = (mt∗ +mτ , (ft∗\χ1, . . . , χp) + fτ )
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where ω(t∗, n1, . . . , nq) = (mt∗ , ft∗), and ω(τ, r) = (mτ , fτ ),

where r =

q∑
i=1

ft∗(χi).

• ω(t∗[� Ay.u0], n1, . . . , nq) = (m, f) where

m = mt∗ +

q∑
i=1

mi + {ni | 1 ≤ i ≤ q}+ {fi(y) | 1 ≤ i ≤ q}

f = ft∗ + ((

q∑
i=1

fi)\y)

ω(t∗, n1, . . . , nq) = (mt∗ , ft∗)

ω(u0, ni) = (mi, fi)

• ω(t∗[x1, . . . , xp � Ay.up], n1, . . . , nq) = (m, f) where

m = mt∗ +mup + {ft∗(xi) | 1 ≤ i ≤ p}+ {fup(y)}
f = (ft∗\x1, . . . , xp) + (fup\y)

ω(t∗, n1, . . . , nq) = (mt∗ , ft∗)

ω(up, ft∗(x1), . . . , ft∗(xp)) = (mup , fup)

The lemma below shows that weights behave well with substitution, i.e. an expression

τ replacing χ in t∗ replaces the weight of χ with that of τ .

Lemma 5.3.4. Let t∗ ∈ ΛµSa be of arity q. Then ω(t∗{τ/χ}, ~nq) = (mt∗+mτ , (ft∗\χ)+

fτ ) where ω(t∗, ~nq) = (mt∗ , ft∗) and ω(τ, ft∗(χ)) = (mτ , fτ ).

Proof. Note that since we work in ΛµSa, the variable χ must appear exactly once in

t∗, and is not bound.

1. χ{τ/χ} = τ .

Therefore:

ω(τ, n) = (mτ , fτ ) = (mτ , ({χn}\χ) + fτ ),

where ω(χ, n) = (∅, {χn}).
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2. 〈 t1, . . . , tq 〉{τ/χ} = 〈 t1, . . . , ti{τ/χ}, . . . , tq 〉 if χ appears in ti.

By induction hypothesis:

ω(ti{τ/χ}, ni) = (mi +mτ , (fi\χ) + fτ ).

Then,

ω(〈 t1, . . . , ti{τ/χ}, . . . , tq 〉, n1, . . . , nq)

= (

q∑
k=1

mk︸ ︷︷ ︸
〈 ~tq 〉

+mτ ,

q∑
k=1,k 6=i

fk + fi︸ ︷︷ ︸
〈 ~tq 〉

\χ+ fτ )

where ω(tk, nk) = (mk, fk).

3. @(t, τ ′){τ/χ} = @(t{τ/χ}, τ ′)
(respectively @(t, τ ′{τ/χ}) if χ appears in t (respectively in τ ′).

• Suppose χ appears in t.

By induction hypothesis:

ω(t{τ/χ}, n) = (mt +mτ , ft\χ+ fτ ).

Then,

ω(@(t{τ/χ}, τ ′), n)

= (mt +mτ + {n}+mτ ′ , ft\χ+ fτ + fτ ′)

= (mt +mτ ′ + {n}︸ ︷︷ ︸
@(t,τ ′)

+mτ , fτ ′ + ft︸ ︷︷ ︸
@(t,τ ′)

\χ+ fτ )

where ω(t, n) = (mt, ft), and ω(τ ′, n) = (m′τ , f
′
τ ).

• Suppose χ appears in τ ′.

By induction hypothesis:

ω(τ ′{τ/χ}, n) = (mτ ′ +mτ , (fτ ′\χ) + fτ ).

Then,

ω(@(t, τ ′{τ/χ}), n) = (mt + {n}+mτ ′ +mτ , ft + fτ ′\χ+ fτ )

= (mt +mτ ′ + {n}︸ ︷︷ ︸
@(t,τ ′)

+mτ , ft + fτ ′︸ ︷︷ ︸
@(t,τ ′)

\χ+ fτ )

where ω(t, n) = (mt, ft), and ω(τ ′, n) = (m′τ , f
′
τ ).
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4. (Ax.t){τ/χ} = Ax.(t{τ/χ}).
Therefore, by induction hypothesis:

ω(t{τ/χ}, n) = (mt +mτ , (ft\χ) + fτ ).

Then,

ω(Ax.(t{τ/χ}), n) = (mt +mτ + {n}+ {ft(x)}, (ft\χ, x) + fτ )

= (mt + {n}+ {ft(x)}︸ ︷︷ ︸
Ax.t

+mτ , (ft\x︸︷︷︸
Ax.t

, χ) + fτ )

where ω(t, n) = (mt, ft) and ω(τ ′, n) = (mτ ′ , fτ ′) .

5. (t∗[← τ ′]){τ/χ} = (t∗{τ/χ})[← τ ′] (respectively t∗[← τ ′{τ/χ}]) if χ appears in

t∗ (respectively τ ′).

• Suppose that χ appears in t∗.

By induction hypothesis:

ω(t∗{τ/χ}, ~nq) = (mt∗ +mτ , (ft∗\χ) + fτ ).

Then,

ω((t∗[← τ ′]){τ/χ}, n1, . . . , nq)

= (mt∗ +mτ +

q∑
i=1

mi, ft∗\χ+ fτ +

q∑
i=1

fi)

= (mt∗ +

q∑
i=1

mi︸ ︷︷ ︸
t∗{τ/χ}

+mτ ,

q∑
i=1

fi + ft∗\χ︸ ︷︷ ︸
t∗{τ/χ}

+fτ )

where ω(t∗, n1, . . . , nq) = (mt∗ , ft∗), and ω(τ ′, ni) = (mi, fi).

• Suppose that χ appears in τ ′.

By induction hypothesis: ω(τ ′{τ/χ}, ni) = (mi +mτ ′ , (fi\χ) + fτ ′).
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Then,

ω((t∗[← τ ′]){τ/χ}, n1, . . . , nq)

= (mt∗ +

q∑
i=1

mi +mτ , ft∗ + fτ +

q∑
i=1

fi\χ)

= (mτ +

q∑
i=1

mi︸ ︷︷ ︸
τ ′{τ/χ}

+mt∗ , fτ +

q∑
i=1

fi\χ︸ ︷︷ ︸
τ ′{τ/χ}

+ft∗)

where ω(t∗, n1, . . . , nq) = (mt∗ , ft∗), and ω(τ ′, ni) = (mi, fi).

6. (t∗[χ1, . . . , χp ← τ ′]){τ/χ} = (t∗{τ/χ}[χ1, . . . , χp ← τ ′])

(respectively t∗[χ1, . . . , χp ← τ ′{τ/χ}]) if χ appears in t∗ (respectively τ ′).

• Suppose that χ appears in t∗.

By induction hypothesis:

ω(t∗{τ/χ}, ~nq) = (mt∗ +mτ , (ft∗\χ) + fτ ).

Then,

ω(t∗{τ/χ}[χ1, . . . , χp ← τ ′], n1, . . . , nq)

= (mt∗ +mτ +mτ ′ , (ft∗\χ1, . . . , χp, χ) + fτ + fτ ′)

= ( mt∗ +mτ ′︸ ︷︷ ︸
t∗[χ1,...,χp←τ ′]

+mτ , fτ ′ + ft∗\χ1, . . . , χp,︸ ︷︷ ︸
t∗[χ1,...,χp←τ ′]

χ+ fτ )

where

ω(t∗, n1, . . . , nq) = (mt∗ , ft∗), and ω(τ ′, r) = (mτ ′ , fτ ′),

where r =

p∑
i=1

ft∗(χi).

• Suppose χ appears in τ ′.

By induction hypothesis:

ω(τ ′{τ/χ}, ~nq) = (mτ ′ +mτ , (fτ ′\χ) + fτ ).

Then,

ω(t∗[χ1, . . . , χp ← τ ′{τ/χ}], n1, . . . , nq)

= ( mt∗ +mτ ′︸ ︷︷ ︸
t∗[χ1,...,χp←τ ′]

+mτ , (ft∗\χ1, . . . , χp) + fτ ′︸ ︷︷ ︸
t∗[χ1,...,χp←τ ′]

\χ+ fτ )
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where

ω(t∗, n1, . . . , nq) = (mt∗ , ft∗), and

ω(τ ′, r) = (mτ ′ , fτ ′),

where r =

p∑
i=1

ft∗(χi).

7. (t∗[� Ay.u0]){τ/χ} = (t∗{τ/χ}[� Ay.u0]) (respectively t∗[� Ay.u0{τ/χ}]) if χ

appears in t∗ (respectively u0).

• Suppose that χ appears in t∗.

By induction hypothesis:

ω(t∗{τ/χ}, ~nq) = (mt∗ +mτ , (ft∗\χ) + fτ ).

Then,

ω(t∗{τ/χ}[� Ay.u0], n1, . . . , nq)

= (mt∗ +mτ +

q∑
i=1

mi + {ni | 1 ≤ i ≤ q}+ {fi(y) | 1 ≤ i ≤ q},

ft∗\χ+ fτ + ((

q∑
i=1

fi)\y))

= (mt∗ +

q∑
i=1

mi + {ni | 1 ≤ i ≤ q}+ {fi(y) | 1 ≤ i ≤ q}︸ ︷︷ ︸
t∗[�Ay.u0]

+mτ ,

((

q∑
i=1

fi)\y) + ft∗︸ ︷︷ ︸
t∗[�Ay.u0]

\χ+ fτ )

where

ω(t∗, n1, . . . , nq) = (mt∗ , ft∗)

ω(u0, ni) = (mi, fi)

• Suppose χ appears in u0.

By induction hypothesis:

ω(u0{τ/χ}, ~nq) = (mu0 +mτ , (fu0\χ) + fτ ).
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Then,

ω(t∗[� Ay.u0{τ/χ}], n1, . . . , nq)

= (mt∗ +

q∑
i=1

mi + {ni | 1 ≤ i ≤ q}+ {fi(y) | 1 ≤ i ≤ q}︸ ︷︷ ︸
t∗[�Ay.u0]

+mτ ,

ft∗ + ((

q∑
i=1

fi)\y︸ ︷︷ ︸
t∗[�Ay.u0]

, χ) + fτ )

where

ω(t∗, n1, . . . , nq) = (mt∗ , ft∗)

ω(u0, ni) = (mi, fi)

8. (t∗[x1, . . . , xp � Ay.up]){τ/χ} = (t∗{τ/χ}[x1, . . . , xp � Ay.up]) (respectively

(t∗[x1, . . . , xp � Ay.up{τ/χ}])) if χ appears in t∗ (respectively up).

• Suppose that χ appears in t∗.

By induction hypothesis:

ω(t∗{τ/χ}, ~nq) = (mt∗ +mτ , (ft∗\χ) + fτ ).

Then,

ω(t∗[x1, . . . , xp � Ay.up], n1, . . . , nq)

= (mt∗ +mτ +mup + {ft∗(xi) | 1 ≤ i ≤ p}+ {fup(y)},
(ft∗\x1, . . . , xp, χ) + fτ + (fup\y))

= (mt∗ +mup + {ft∗(xi) | 1 ≤ i ≤ p}+ {fup(y)}︸ ︷︷ ︸
t∗[x1,...,xp�Ay.up]

+mτ ,

(fup\y) + ft∗\x1, . . . , xp︸ ︷︷ ︸
t∗[x1,...,xp�Ay.up]

, χ+ fτ )

where

ω(t∗, n1, . . . , nq) = (mt∗ , ft∗)

ω(up, ft∗(x1), . . . , ft∗(xp)) = (mup , fup)

• Suppose χ appears in up.
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By induction hypothesis:

ω(up{τ/χ}, ~nq) = (mup +mτ , (fup\χ) + fτ ).

Then,

ω(t∗[x1, . . . , xp � Ay.up], n1, . . . , nq)

= (mt∗ +mup +mτ + {ft∗(xi) | 1 ≤ i ≤ p}+ {fup(y)},
(ft∗\x1, . . . , xp) + (fup\y, χ) + fτ )

= (mt∗ +mup + {ft∗(xi) | 1 ≤ i ≤ p}+ {fup(y)}︸ ︷︷ ︸
t∗[x1,...,xp�Ay.up]

+mτ ,

(ft∗\x1, . . . , xp) + (fup\y︸ ︷︷ ︸
t∗[x1,...,xp�Ay.up]

, χ) + fτ )

where

ω(t∗, n1, . . . , nq) = (mt∗ , ft∗)

ω(up, ft∗(x1), . . . , ft∗(xp)) = (mup , fup)

By definition of ω(t∗[χ← τ ], ~nq), we get the following corollary:

Corollary 5.3.5. Let t∗ ∈ ΛµSa. Then, ω(t∗{τ/χ}, ~nq) = ω(t∗[χ← τ ], ~nq).

From the following lemma we can deduce the monotonicity of ω, i.e. ω(t∗, ~nk) ≤
ω(t∗, ~mk) if ni ≤ mi for 1 ≤ i ≤ k.

Lemma 5.3.6. For t∗ ∈ ΛµSa, ω(t∗, ~mk, n, ~pl) ≤ ω(t∗, ~mk, n+ 1, ~pl).

Also, let χ ∈ FV (t∗), ω(t∗, ~mk, n, ~pl) = (mt∗ , ft∗), and ω(t∗, ~mk, n+ 1, ~pl) = (m′t∗ , f
′
t∗).

Then ft∗(χ) ≤ f ′t∗(χ).

Proof. By induction on t∗.

• For a variable χ:

ω(χ, n) = (∅, {χn})
ω(χ, n+ 1) = (∅, {χn+1})
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• For an empty tuple:

ω(〈 〉, n) = (∅, ∅)
= ω(〈 〉, n+ 1)

• For tuples:

ω(〈 t1, . . . , tp 〉, n1, . . . , np) = (

p∑
i=1

mi,

p∑
i=1

fi)

Then:

ω(〈 t1, . . . , tp 〉, n1, . . . , ns + 1, . . . , np)

= (

p∑
i=1,i 6=s

mi +m′s,
p∑

i=1,i 6=s
fi + f ′s)

for 1 ≤ i ≤ p, where

ω(ti, ni) = (mi, fi)

ω(ts, ns + 1) = (m′s, f
′
s)

We apply our induction hypothesis ω(ts, ns) ≤ ω(ts, ns + 1).

• For applications:

ω(@(t, τ), n) = (mt +mτ + {n}, ft + fτ )

Then:

ω(@(t, τ), n+ 1) = (m′t +m′τ + {n+ 1}, f ′t + f ′τ )

where

ω(t, n) = (mt, ft)

ω(τ, n) = (mτ , fτ )

ω(t, n+ 1) = (m′t, f
′
t)

ω(τ, n+ 1) = (m′τ , f
′
τ )

We apply our induction hypothesis, therefore ω(t, n) ≤ ω(t, n+ 1) and ω(τ, n) ≤
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ω(τ, n+ 1).

• For abstractions:

ω(Ax.t, n) = (mt + {n}+ {ft(x)}, ft\x)

Then:

ω(Ax.t, n+ 1) = (m′t + {n+ 1}+ {f ′t(x)}, f ′t\x)

where

ω(t, n) = (mt, ft)

ω(t, n+ 1) = (m′t, f
′
t)

We apply our induction hypothesis ω(t, n) ≤ ω(t, n+ 1).

• For weakened sharings:

ω(t∗[← τ ], n1, . . . , np) = (mt∗ +

p∑
i=1

mi, ft∗ +

p∑
i=1

fi)

Then:

ω(t∗[← τ ], n1, . . . , ns + 1, . . . , np)

= (m′t∗ +

p∑
i=1,i 6=s

mi +m′s, f
′
t∗ +

p∑
i=1,i 6=s

fi + f ′s)

where

ω(t∗, n1, . . . , np) = (mt∗ , ft∗)

ω(τ, ni) = (mi, fi)

ω(t∗, n1, . . . , ns + 1, . . . , np) = (m′t∗ , f
′
t∗)

ω(τ, ns + 1) = (m′s, f
′
s)

We apply our induction hypothesis on t∗, and ω(τ, ns) ≤ ω(τ, ns + 1).

• For sharings:

ω(t∗[χ1, . . . , χp ← τ ], n1, . . . , nq) = (mt∗ +mτ , (ft∗\χ1, . . . , χp) + fτ )
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Then:

ω(t∗[χ1, . . . , χp ← τ ], n1, . . . , ns + 1, . . . , nq)

= (m′t∗ +m′τ , (f
′
t∗\χ1, . . . , χp) + f ′τ )

where

ω(t∗, n1, . . . , nq) = (mt∗ , ft∗)

ω(τ, r) = (mτ , fτ )

r =

q∑
i=1

ft∗(χi)

ω(t∗, n1, . . . , ns + 1, . . . , nq) = (m′t∗ , f
′
t∗)

ω(τ, r′) = (m′τ , f
′
τ )

r′ =
q∑
i=1

f ′t∗(χi)

By induction on t∗, and since ft∗(χi) ≤ f ′t∗(χi).

• For weakened distributors:

ω(t∗[� Ay.u0], n1, . . . , nq) = (m, f)

where

m = mt∗ +

q∑
i=1

mi + {ni | 1 ≤ i ≤ q}+ {fi(y) | 1 ≤ i ≤ q}

f = ft∗ + ((

q∑
i=1

fi)\y)

Then:

ω(t∗[� Ay.u0], n1, . . . , ns + 1, . . . , nq) = (m′, f ′)
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where

m′ = m′t∗ +

q∑
i=1,i 6=s

mi +m′s + {ni | 1 ≤ i ≤ q, i 6= s}+

{ns + 1}+ {fi(y) | 1 ≤ i ≤ q, i 6= s}+ {f ′s(y)}

f ′ = f ′t∗ + (((

q∑
i=1,i 6=s

fi) + f ′s)\y)

ω(t∗, n1, . . . , nq) = (mt∗ , ft∗)

ω(u0, ni) = (mi, fi)

ω(t∗, n1, . . . , ns + 1, . . . , nq) = (m′t∗ , f
′
t∗)

ω(u0, ns + 1) = (m′s, f
′
s)

By induction on t∗, and ω(u0, ns) ≤ ω(u0, ns + 1), and fs(y) ≤ f ′s(y).

• For distributors:

ω(t∗[x1, . . . , xp � Ay.up], n1, . . . , nq) = (m, f)

where

m = mt∗ +mup + {ft∗(xi) | 1 ≤ i ≤ p}+ {fup(y)}
f = (ft∗\x1, . . . , xp) + (fup\y)

Then:

ω(t∗[x1, . . . , xp � Ay.up], n1, . . . , ns + 1, . . . , nq) = (m, f)

where

m′ = m′t∗ +m′up + {f ′t∗(xi) | 1 ≤ i ≤ p}+ {f ′up(y)}
f ′ = (f ′t∗\x1, . . . , xp) + (f ′up\y)
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ω(t∗, n1, . . . , nq) = (mt∗ , ft∗)

ω(up, ft∗(x1), . . . , ft∗(xp)) = (mup , fup)

ω(t∗, n1, . . . , ns + 1, . . . , nq) = (m′t∗ , f
′
t∗)

ω(up, f ′t∗(x1), . . . , f ′t∗(xp)) = (m′up , f
′
up)

By induction on t∗, up, and ft∗(xi) ≤ f ′t∗(xi) and fup(y) ≤ f ′up(y).

5.4 Depth

We now introduce another part of the normalization measure, the depth, which is the

length of the paths from each closure to the root of the term. It extends depth from

weakening calculus (see Definition 5.2.4). In our definition we omit all cases redundant

with the weakening calculus. Note that depth is the same when considering weak-

ened sharings and non-weakened sharings. In the informal representation below, we

consider that the terms illustrated are at depth n. The output of the depth func-

tion is shown in overlined blue, and the parameters passed recursively are shown in

underlined red. Variables χ do not involve closures, so their depth output is 0. For

expressions Ax.t,@(t, u∗), or t∗[~χ ← u∗] at depth n, the subterms t and u∗ are at

depth n + 1. The expression t∗ stays at depth n because of the congruence rule. If

t∗ = w∗[φ][ψ] ∼ w∗[ψ][φ], we want the path to these closures to be of the same length.

For distributors, intuitively we see Ay.up as being at depth n+ 1, so we consider up to

be at depth n+ 2. Only the depths of the closures appear in the output.

• 0χ

• 0〈 〉

• Ax.(n+1t)

• @(n+1t, n+1u)

• (nt∗)(n+1
[x1, . . . , xp ← n+1u])

• (nt∗)(
n+1

[x1, . . . , xp � Ay. n+2up])

• 〈 n+1,...,n+1 〉tp
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For an expression t∗, ∂(t∗, n) = {km(k) | k ∈ N} means that when t∗ is of depth n, there

are m(k) closures of t∗ of depth k. The signature of the depth function is as follows:

∂ : T ∗︸︷︷︸
term, stream, tuple t∗

→ Np︸︷︷︸
input depths

→ Mf (N)︸ ︷︷ ︸
output depths

Let t∗ be a term, stream or a tuple, let τ be a term or a stream, let χ, χi be variables.

For any expression t∗, we measure ∂(t∗, 1).

We now define the depth ∂(t∗, n), which measures a term t∗ that is at depth n. We

define it by induction on t∗:

Definition 5.4.1. [Depth] The other cases are similar to the definition for the weak-

ening calculus.

• ∂(〈 t1, . . . , tp 〉, n) = (

p∑
i=1

mi)

where ∂(ti, n+ 1) = mi, and p ≥ 0.

• ∂(t∗[x1, . . . , xp � Ay.up], n) = ∂(t∗, n) + ∂(up, n+ 2) + {n} (p ≥ 0).

From the following lemma we deduce that depth is monotonous, i.e. if n ≤ m, ∂(t∗, n) ≤
∂(t∗,m).

Lemma 5.4.2. For t∗ ∈ ΛµSa, n ∈ N, ∂(t∗, n) ≤ ∂(t∗, n+ 1).

Proof. By induction on t∗.

• ∂(χ, n) = ∅ = ∂(χ, n+ 1).

•

∂(〈 t1, . . . , tp 〉, n) = (

p∑
i=1

mi)

≤ (

p∑
i=1

m′i)

= ∂(〈 t1, . . . , tp 〉, n+ 1)

where ∂(ti, n+ 1) = mi, ∂(ti, n+ 2) = m′i, and p ≥ 0.
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•

∂(@(t, τ), n) = ∂(t, n+ 1) + ∂(u, n+ 1)

≤ ∂(t, n+ 2) + ∂(u, n+ 2)

= ∂(@(t, τ), n+ 1)

•

∂(Ax.t, n) = ∂(t, n+ 1)

≤ ∂(t, n+ 2) = ∂(Ax.t, n+ 1)

•

∂(t∗[χ1, . . . , χp ← τ ], n) = ∂(t∗, n) + ∂(τ, n+ 1) + {n}
≤ ∂(t∗, n+ 1) + ∂(τ, n+ 2) + {n+ 1} = ∂(t∗[χ1, . . . , χp ← τ ], n+ 1)

where p ≥ 0.

•

∂(t∗[x1, . . . , xp � Ay.up], n) = ∂(t∗, n) + ∂(up, n+ 2) + {n}
≤ ∂(t∗, n+ 1) + ∂(up, n+ 3) + {n+ 1} = ∂(t∗[x1, . . . , xp � Ay.up], n+ 1)

where p ≥ 0.

5.5 Strong normalization of −→s

We now show that −→s is strongly normalizing, using our measure. For t ∈ ΛµSa, the

measure is such that, for a step t −→s u:

1. There is a weakening step (M1):

J t Kw −→w J u Kw
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Otherwise,

J t Kw = J u Kw

2. The weight decreases (M2):

mt > mu

where

ω(t, 1) = (mt, ft)

ω(u, 1) = (mu, fu)

Otherwise,

mt = mu

3. The number of closures decreases, otherwise it remains constant. (M3)

4. The depth decreases (M4):

∂(t, 1) > ∂(u, 1)

The following list summarizes all the different cases.

• Lifting rules:

– Lifting a weakened sharing out of a weakened distributor: M4

– Lifting a weakened sharing out of anything else: M1

– Lifting a non-weakened sharing out of anything: M4

– Lifting a distributor out of anything: M4

• Compounding rules:

– Compounding when the first sharing is a weakening: M1

– Compounding when both sharings are not weakenings: M3

• Subtitution rule: M3

• Duplication rules:
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– Duplicating a weakened application/abstraction: M1

– Removing a weakened distributor: M1

– Duplicating a non-weakened application/abstraction: M2

– Removing a non-weakened distributor: M2

5.5.1 Measure 1: weakening reduction

Lemma 5.5.1. The following reduction steps translate to a reduction step in the weak-

ening calculus (M1):

• Lifting weakened sharings. Let [φ] be a weakened sharing:

– Ax.(u[φ]) −→s (Ax.u)[φ] if x ∈ FV (u)

–
@(u[φ], t)

@(u, t[φ])
−→s @(u, t)[φ]

– u∗[ ~χp ← τ [φ]] −→s u
∗[ ~χp ← τ ][φ]

– For p 6= 0:

u∗[ ~xp � Ay.〈 ~tp 〉[Ψ][φ]] −→s u
∗[ ~xp � Ay.〈 ~tp 〉[Ψ]][φ] if y ∈ FV (〈 ~tp 〉[Ψ])

• Duplications on weakenings:

– u∗[← @(v, τ)] −→s u
∗[← v][← τ ]

– u∗[← Ax.t] −→s u
∗[� Ax.〈 ~yp 〉[~yp ← t]]

– u∗[� Ay.〈 〉[← y]] −→s u
∗

• Compounding if the first sharing is a weakening:

u∗[← χ][ ~χ′m, χ, ~χ
′′
n ← τ ] −→s u

∗[ ~χ′m, ~χ
′′
n ← τ ]

Proof. We show that each case corresponds to a step in the weakening calculus.

• Lifting a weakened sharing from abstractions (similar for applications, sharings):

Ax.(J u Kw⦃ φ ⦄w) −→w (Ax.J u Kw)⦃ φ ⦄w

• Lifting a weakened sharing from a non-weakened distributor:

J u∗ Kw{Ay.J ti[Ψ][φ] Kw/xi}1≤i≤p −→+
w J u∗ Kw{Ay.J ti[Ψ] Kw/xi}1≤i≤p⦃ φ ⦄w
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• For duplication of applications:

J u∗[← @(v, τ)] Kw = J u∗ Kw[← @(J v Kw, J τ Kw)]

−→w J u∗ Kw[← J v Kw][← J τ Kw]

= J u∗[← v][← τ ] Kw

• For duplication of abstractions:

J u∗ Kw[← Ax.J t Kw] −→w J u∗ Kw[← J t Kw{•/x}]
= J u∗ Kw⦃� Ax.〈 〉[← t] ⦄w

• For distributor removal:

J u∗ Kw⦃� λy.〈 〉[← y] ⦄w = J u∗ Kw[← •]
−→w J u∗ Kw

• Compounding when the first sharing is a weakening:

u∗[← χ][ ~χ′m, χ, ~χ
′′
n ← τ ] −→s u

∗[ ~χ′m, ~χ
′′
n ← τ ]

J u∗ Kw⦃ τ/ ~χ′m, ~χ′′n ⦄w[← J τ Kw] −→w J u∗ Kw⦃ τ/ ~χ′m, ~χ′′n ⦄w

since J τ Kw is a subterm of J u∗ Kw⦃ τ/ ~χ′m, ~χ′′n ⦄w.

5.5.2 Measure 2: weight

Lemma 5.5.2. The following reduction steps are such that, if t∗ −→s u
∗:

1. Their denotation in the weakening calculus is unchanged, i.e. J t∗ Kw = J u∗ Kw

2. Their weight strictly decreases, i.e. mt∗ > mu∗ if ω(t∗, ~np) = (mt∗ , ft∗) and

ω(u∗, ~np) = (mu∗ , fu∗).

• Duplications on non-weakenings

– u∗[ ~χp ← @(v, τ)] −→s u
∗{@(yi, zi)/xi}[~yp ← v][~zp ← τ ]
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– u∗[ ~xp ← Ax.t] −→s u
∗[ ~xp � Ax.〈 ~yp 〉[~yp ← t]]

– u∗[ ~xp � Ay.〈 ~tp 〉[~zq ← y]] −→s u
∗{(Ayi.ti[~zlii ← yi])/xi}

and {z1
i , . . . , z

li
i } = {~zq} ∩ FV (ti)

Proof. For M1, the weakenings are the same for terms on the LHS and RHS of the

reductions, so there are no weakening reductions. We show that the weight, measure

2, strictly decreases.

• When duplicating applications (similar for abstractions), the weight(M2) strictly

decreases:

ω(u∗[ ~χp ← @(v, τ)], n1, . . . , nq)

= (m+mv +mτ + {r}, (f\χ1, . . . , χp) + fv + fτ )

ω(u∗{@(y1, χ
′
1)/χ1} . . . {@(yp, χ

′
p)/χp}[~yp ← v][ ~χ′p ← τ ], n1, . . . , nq)

= (m+

p∑
i=1

(mi
y +mi

χ′) + {f(χi) | i ≤ p}+mv +mτ ,

((f\ ~χp) +

p∑
i=1

(f iy + f iχ′))\~yp, ~χ′p + fv + fτ )

= (m+ {f(χi) | i ≤ p}+mv +mτ , (f\ ~χp) + fv + fτ )

where

ω(u∗, n1, . . . , nq) = (m, f)

ω(yi, f(χi)) = (mi
y, f

i
y) = (∅, {yf(χi)

i })
ω(χ′i, f(χi)) = (mi

χ′ , f
i
χ′) = (∅, {χ′f(χi)

i }
ω(τ, r) = (mτ , fτ )

ω(v, r) = (mv, fv)

where r =

q∑
i=1

f(χi).

using Lemma 5.3.4 on substitutions. The weight strictly decreases since r >

f(χi). Graphically (with ki = f(χi)) we have:
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un

@r

tr τ r

χ
k1
1

χ
kp
p

−→s

u{@(yi, χ
′
i)/χi}n

@k1

@kp

tr τ r

y
k1
1

y
kp
p

χ
′k1
1

χ
′kp
p

un

Ar

tr

x
k1
1 x

kp
p

yr

−→s

un

Ak1 Akp

tr

x
k1
1 x

kp
p

yr

y
k1
1 y

kp
p

• When removing the distributor, the weight(M2) strictly decreases:

ω(u∗, n) = (m, f)

ω(ti, f(xi)) = (mi, f i)

ω(〈 ~tp 〉, f(x1), . . . , f(xp)) = (m′, f ′) = (

p∑
i=1

mi,

p∑
i=1

f i)

ω(y, r) = (∅, {yr}) where r =

q∑
j=1

f ′(zj)

ω(〈 ~tp 〉[~zq ← y]], f(x1), . . . , f(xp)) = (m′ + {r}, f ′\~zq)

ω(yi, ri) = (∅, {yrii }) where ri =

li∑
k=1

f i(zk)

ω((Ayi.ti[~zlii ← yi]), f(xi)) = (mi + {f(xi)}+ {ri | 1 ≤ i ≤ p}, f i\~zli)
ω(u∗[ ~xp � Ay.〈 ~tp 〉[~zq ← y]], n) = (m+m′ + {f(xi) | 1 ≤ i ≤ p}+ {r},

(f\ ~xp) + (f ′\~zq))
ω(u∗{(Ayi.ti[~zlii ← yi])/xi}, n) = (m+m′ + {f(xi) | 1 ≤ i ≤ p}+

{ri | 1 ≤ i ≤ p},

(f\ ~xp) +

i∑
i=1

(f i\~zlii ))
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using Lemma 5.3.4 on substitutions. Since ri < r, the weight strictly decreases.

Graphically (with ki = f(xi)) we have:

un

Ak1 Akp

t
k1
1 t

kp
p

x
k1
1 x

kp
p

yr

−→s

un

Ak1 Akp

t
k1
1 t

kp
p

y
r1
1 y

rp
p

x
k1
1 x

kp
p

5.5.3 Measure 3: number of closures

The following reduction steps are such that, if t∗ −→s u
∗:

1. Their denotation in the weakening calculus is unchanged, i.e. J t∗ Kw = J u∗ Kw

2. Their weight is unchanged, i.e. ω(t∗, ~np) = ω(u∗, ~np)

3. The number of closures strictly decreases.

The rules that strictly decrease the number of closures are:

• Compounding rule when both sharings are not weakenings

u∗[ ~χp ← χ][ ~χ′m, χ, ~χ
′′
n ← τ ] −→s u

∗[ ~χ′m, ~χp, ~χ
′′
n ← τ ]

• Substitution rule u∗[x← τ ] −→s u
∗{τ/x}

Proof. For M1, the weakenings are the same for terms on the LHS and RHS of the

reductions, so there are no weakening reductions.

• For the compounding rule, the weight (M2) is not affected:

128



– u∗[ ~χp ← χ][ ~χ′m, χ, ~χ
′′
n ← τ ] −→s u

∗[ ~χ′m, ~χp, ~χ
′′
n ← τ ]

ω(χ, s) = (∅, {χs})

where s =

p∑
l=1

f(χl)

ω(u∗, n) = (m, f)

ω(u∗[ ~χp ← χ], n) = (m, f\ ~χp + {χs})

ω(τ, r) = (mτ , f τ ) where r =

m∑
j=1

f(χ′j) +

n∑
k=1

f(χ′′k) + s

ω((u∗[ ~χp ← χ])[ ~χ′m, χ, ~χ
′′
n ← τ ], n)

= (m+mτ , (f\ ~χp, ~χ′m, ~χ′′n) + f τ )

ω(u∗[ ~χ′m, ~χp, ~χ
′′
n ← τ ], n)

= (m+mτ , (f\ ~χp, ~χ′m), ~χ′′n + f τ )

The compounding rule reduces the number of sharings (M3).

• For the substitution rule, the weight (M2) is not affected:

ω(u∗, n) = (m, f)

ω(τ, r) = (mτ , f τ ) where r = f(x)

ω(u∗[x← τ ], n) = (m+mτ , (f\x) + f τ )

= ω(u∗{τ/x}, n)

Using Lemma 5.3.4 on substitutions and Corollary 5.3.5. However, the substitu-

tion rule strictly reduces the number of sharings (M3).

5.5.4 Measure 4: depth

The following reduction steps are such that, if t∗ −→s u
∗:

1. Their denotation in the weakening calculus is unchanged, i.e. J t∗ Kw = J u∗ Kw

2. Their weight is unchanged, i.e. ω(t∗, ~np) = ω(u∗, ~np)

3. The number of closures remains the same.
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4. Their depth strictly decreases, i.e. ∂(t∗, n) > ∂(u∗, n).

Depth decreases in the following situations:

• Lifting distributors and non-weakened sharings out of anything, except non-

weakened distributors.

Let [φ] be a distributor or a non-weakened sharing:

– Ax.(u[φ]) −→s (Ax.u)[φ] if x ∈ FV (u)

–
@(u[φ], t)

@(u, t[φ])
−→s @(u, t)[φ]

– u∗[ ~χp ← τ [φ]] −→s u
∗[ ~χp ← τ ][φ]

– u∗[� Ay.〈 〉[Ψ][φ]] −→s u
∗[� Ay.〈 〉[Ψ]][φ] if y ∈ FV ([Ψ])

• Lifting a distributor out of a non-weakened distributor.Let [φ] be a distributor:

For p > 0,

u∗[ ~xp � Ay.〈 ~tp 〉[Ψ][φ]] −→s u
∗[ ~xp � Ay.〈 ~tp 〉[Ψ]][φ]

if y ∈ FV (〈 ~tp 〉[Ψ])

• Lifting a weakened sharing out of a weakened distributor:

u∗[� Ay.t0[← τ ]] −→s u
∗[� Ay.t0][← τ ]

• Lifting a non-weakened sharing out of a non-weakened distributor. Let p, q > 0:

u∗[ ~xp � Ay.tp[χq ← τ ]] −→s u
∗[ ~xp � Ay.tp][χq ← τ ]

Proof. • Lifting a weakened distributor out of an abstraction (other cases are sim-

ilar):

For M1, the weakenings are the same for terms on the LHS and RHS of the

reductions, so there are no weakening reductions.

Ax.J u Kw{•/y}⦃ Ψ ⦄w = (Ax.J u Kw){•/y}⦃ Ψ ⦄w
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The weight (M2) is not affected:

ω(〈 〉[Ψ], n) = (m〈 〉[Ψ], f 〈 〉[Ψ])

ω(u, n) = (mu, fu)

ω(u[� Ay.〈 〉[Ψ]], n) = (mu +m〈 〉[Ψ] + {n}+ {f 〈 〉[Ψ](y)},
fu + (f 〈 〉[Ψ]\y))

ω(Ax.u, n) = (mu + {n}+ {fu(x)}, fu\x)

ω(〈 〉[Ψ], n) = (m〈 〉[Ψ], f 〈 〉[Ψ])

ω(Ax.(u[� Ay.〈 〉[Ψ]]), n) = (mu +m〈 〉[Ψ] + {n}+ {f 〈 〉[Ψ](y)}
+ {n}+ {fu(x)}, fu\x+ f 〈 〉[Ψ]\y)

ω((Ax.u)[� Ay.〈 〉[Ψ]], n) = (mu + {n}+ {fu(x)}
+m〈 〉[Ψ] + {n}+ {f 〈 〉[Ψ](y)},
fu\x+ f 〈 〉[Ψ]\y)

The number of closures (M3) stays the same.

Depth (M4) strictly decreases:

∂(Ax.(u[� Ay.〈 〉[Ψ]]), n) = ∂(u[� Ay.〈 〉[Ψ]]), n+ 1)

= ∂(u, n+ 1) + ∂(〈 〉[Ψ], n+ 3) + {n+ 1}

∂((Ax.u)[� Ay.〈 〉[Ψ]], n) = ∂(Ax.u, n) + ∂(〈 〉[Ψ], n+ 2) + {n}
= ∂(u, n+ 1) + ∂(〈 〉[Ψ], n+ 2) + {n}

Using the monotonicity Lemma 5.4.2 ∂(〈 ~tp 〉, n+ 2) ≤ ∂(〈 ~tp 〉, n+ 3), and the

depth strictly decreases.

• Lifting a non-weakened distributor out of an abstraction (other cases are similar):

Ax.(u[ ~xp � Ay.〈 ~tp 〉[Ψ]]) −→s (Ax.u)[ ~xp � Ay.〈 ~tp 〉[Ψ]]

For M1, the weakenings are the same for terms on the LHS and RHS of the

reductions, so there are no weakening reductions.
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The weight (M2) is not affected:

ω(u, n) = (mu, fu)

ω(〈 ~tp 〉[Ψ], f(x1), . . . , f(xp)) = (m′, f ′)

ω((u[ ~xp � Ay.〈 ~tp 〉[Ψ]]), n) = (mu +m′ + {f(xi) | 1 ≤ i ≤ p}+ {f ′(y)},
(fu\ ~xp) + (f ′\y))

ω(Ax.u, n) = ({n}+mu + {fu(x)}, fu\x)

ω(Ax.(u[ ~xp � Ay.〈 ~tp 〉[Ψ]]), n) = ({n}+mu +m′ + {f(xi) | 1 ≤ i ≤ p}+
{f ′(y)}+ {fu(x)},
(fu\ ~xp, x) + (f ′\y))

ω((Ax.u)[ ~xp � Ay.〈 ~tp 〉[Ψ]], n) = ({n}+mu + {fu(x)}+ {f(xi) | 1 ≤ i ≤ p}+
{f ′(y)}+m′,

fu\x, ~xp + (f ′\y))

The number of closures stays the same.

Depth (M4) strictly decreases:

∂(Ax.(u[ ~xp � Ay.〈 ~tp 〉[Ψ]]), n) = ∂((u[ ~xp � Ay.〈 ~tp 〉[Ψ]]), n+ 1)

= ∂(u, n+ 1) + ∂(〈 ~tp 〉[Ψ], n+ 3) + {n+ 1}

∂((Ax.u)[ ~xp � Ay.〈 ~tp 〉[Ψ]], n) = ∂(Ax.u, n) + ∂(〈 ~tp 〉[Ψ], n+ 2) + {n}
= ∂(u, n+ 1) + ∂(〈 ~tp 〉[Ψ], n+ 2) + {n}

Using Lemma 5.4.2 (monotonicity) ∂(〈 ~tp 〉, n+ 2) ≤ ∂(〈 ~tp 〉, n+ 3), and the

depth strictly decreases.

• Lifting a non-weakened sharing out of an abstraction (other cases are similar)

For M1, the weakenings are the same for terms on the LHS and RHS of the

reductions, so there are no weakening reductions.
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The weight (M2) is not affected:

ω(τ, r) = (mτ , f τ )

ω(u∗, n) = (m, f)

ω((u[ ~χp ← τ ]), n) = (m+mτ , f\ ~χp + f τ )

ω(Ax.u, n) = (m, f\x)

ω(Ax.(u[ ~χp ← τ ]), n) = (m+mτ , f\ ~χp, x+ f τ )

ω((Ax.u)[ ~χp ← τ ], n) = (m+mτ , f\ ~χp, x+ f τ )

The number of closures does not change.

Depth (D4) strictly decreases:

∂(Ax.(u[ ~χp ← τ ]), n) = ∂((u[ ~χp ← τ ]), n+ 1)

= ∂(u, n+ 1) + ∂(τ, n+ 2) + {n+ 1}

∂((Ax.u)[ ~χp ← τ ], n) = ∂((Ax.u), n) + ∂(τ, n+ 1) + {n}
= ∂(u, n+ 1) + ∂(τ, n+ 1) + {n}

Using Lemma 5.4.2 (monotonicity) ∂(τ, n+ 1) ≤ ∂(τ, n+ 2), and the depth

strictly decreases.

• Lifting weakened sharings from weakened distributors:

For M1, the weakenings are the same for terms on the LHS and RHS of the

reductions, so there are no weakening reductions.

u∗[� Ay.〈 〉[Ψ][← τ ]] −→s u
∗[� Ay.〈 〉[Ψ]][← τ ]

J u∗ Kw⦃ ψ ⦄w{•/y}[← τ ] = J u∗ Kw⦃ ψ ⦄w{•/y}[← τ ]
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The weight (M2) is not affected:

ω(〈 〉[Ψ], n) = (m〈 〉[Ψ], f 〈 〉[Ψ])

ω(u∗, n) = (m, f)

ω(τ, n) = (mτ , f τ )

ω(u∗[� Ay.〈 〉[Ψ][← τ ]], n) = (m+m〈 〉[Ψ] + {n}+ {f 〈 〉[Ψ](y)}+mτ ,

f + (f 〈 〉[Ψ]\y) + f τ )

ω(u∗[� Ay.〈 〉[Ψ]][← τ ], n) = (m+m〈 〉[Ψ] + {n}+ {f 〈 〉[Ψ](y)}+mτ ,

f + (f 〈 〉[Ψ]\y) + f τ )

The number of closures (M3) remains the same.

The depth strictly decreases:

∂(u∗[� Ay.〈 〉[Ψ][← τ ]], n) =

= ∂(u∗, n) + ∂(〈 〉[Ψ][← τ ]], n+ 2) + {n+ 1}
= ∂(u∗, n) + ∂(〈 〉[Ψ], n+ 2) + ∂(τ, n+ 3) + {n+ 1}+ {n+ 3}

∂(u∗[� Ay.〈 〉[Ψ]][← τ ], n)

= ∂(u∗, n) + ∂(〈 〉[Ψ]], n+ 2) + ∂(τ, n+ 1) + {n+ 1}+ {n+ 1}

By monotonicity of depth.

Our measure strictly decreases after each sharing reduction, we therefore conclude:

Theorem 5.5.3. The reduction −→s is strongly normalizing.
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Chapter 6

Proof of PSN and confluence

Using the results from the previous chapters, we show PSN for the atomic λµ-calculus

with respect to the ΛµS-calculus. A corollary that follows is that the atomic λµ-calculus

is confluent.

6.1 Preservation of strong normalization

We now combine Theorems 4.2.3 (J−Kw preserves non-termination), 4.3.20 (PSN for

the weakening calculus), and strong normalization of sharing reductions 5.5.3 to get

PSN:

Theorem 6.1.1 (PSN for the atomic λµ-calculus). For T ∈ ΛµS, if L T M ∈ ΛµSa has an

infinite reduction path, then T ∈ ΛµS has an infinite reduction path.

L T M ∈ ΛµSa J L T M Kw = L T Mw ∈ ΛµSw T = J L T M K = bL T Mwc ∈ ΛµS

4.2.3
=⇒

4.3.20
=⇒

t′ J t′ Kw J t′ K

∞ ∞ ∞
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Proof. Let T ∈ ΛµS. Suppose there exists an infinite reduction path of L T M. Because

of Theorem 5.5.3, infinite reductions must come from (β, µ)-reductions. From Theo-

rem 4.2.3, from LT M we can construct an infinite (β, µ)-reduction path of J L T M Kw. By

Lemma 4.1.5, J L T M Kw = L T Mw. From Theorem 4.3.20, from L T Mw we can construct

an infinite (β, µ)-reduction path of T .

6.2 Corollary: confluence

Using lemmas showing PSN, we can deduce confluence for the atomic λµ-calculus.

Theorem 6.2.1 (Confluence of ΛµS). Let T,U, V ∈ ΛµS. If T −→∗β,µ U and T −→∗β,µ V ,

there exists W ∈ ΛµS such that U, V −→∗β,µ W .

T

U V

W

β,µ
∗

β,µ
∗

β,µ
∗

β,µ
∗

Proof. (sketch.) Let −→β,µ denote one of the reduction rules in ΛµS. Let M,M ′, N,N ′

be terms of ΛµS, and S,S ′ ∈ ΛµS be streams. The proof is similar to that of the λµ-

calculus, using a new reduction�β,µ (the parallel one-step reduction), such that −→∗β,µ
is the transitive closure of �β,µ, and that �β,µ is confluent. The reduction �β,µ is

defined as follows:

• χ�β,µ χ

• If M �β,µ M
′, then Ax.M �β,µ Ax.M ′

• If M �β,µ M
′ and N∗ �β,µ N

′∗, then @(M,N∗)�β,µ @(M ′, N ′∗)

• If M �β,µ M
′ and N �β,µ N

′, then (λx.M)N �β,µ M
′{N ′/x}

• If M �β,µ M
′ and N ◦ S �β,µ N

′ ◦ S ′, then (λx.M)(N ◦ S)�β,µ M
′{N ′/x}S ′

• If M �β,µ M
′ and N �β,µ N

′, then (µβ.M)N �β,µ µβ.M
′{N ′ ◦ β/β}

• If M �β,µ M
′ and S �β,µ S ′, then (µβ.M)S �β,µ M

′{S ′/β}
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We then define the maximal parallel one-step reduct:

χ •→ = χ

(Ax.M) •
→

= Ax.M •→

((λx.M)N) •
→

= M •→ {N •→ /x}
((λx.M)(N ◦ S)) •

→

= (M •→ {N •→ /x})S •→

((µβ.M)N) •
→

= µβ.M •→ {(N •→ ◦ β)/β}
((µβ.M)S) •
→

= M •→ {S •→ /β}
@(M,N) = @(M •→ , N •→ ) if we do not have a redex

The proof for confluence for ΛµSa uses the two lemmas below: atomic translations of

ΛµS-terms are sharing normal, and atomic reduction simulates ΛµS-reduction.

Lemma 6.2.2 (Atomic translations of ΛµS-terms are −→s-normal). If t ∈ ΛµSa is

sharing normal then L J t K M = t.

Proof. By induction. Let U be a term or a stream, let χ, χi be variables. Recall that
li
χi

means replacing χi with li fresh distinct variables. Let σ =
l1
χ1

. . .
lp
χp︸ ︷︷ ︸

occurrences in U

, replacing

the different occurrences of each free variable χi with fresh, distinct variables. Let

Φ = [ ~χ1
l1 ← χ1] . . . [ ~χp

lp ← χp]. We use the inductive hypothesis: L J u∗ Kσ M′ = u∗σ if

u∗ is sharing normal.

• J χ K = χ. Then L J χ K M = χ.

• JAx.t K = Ax.J t K Then:

L JAx.t Kσ M′ = LAx.J t Kσ M′

= Ax.L J t Kσ M′

= Ax.tσ
= (Ax.t)σ

by induction on t.
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• J@(t, τ)K = @(J tK, Jτ K). In this case σ = σ1σ2 =
l1
χ1

. . .
lk
χk︸ ︷︷ ︸

occurrences in J t K

lk+1

χk+1
. . .

lp
χp︸ ︷︷ ︸

occurrences in J τ K

.

Then:

L J @(t, τ) Kσ M′ = @(L J t Kσ1 M′, L J τ Kσ2 M′)

= @(tσ1, τσ2)

= @(t, τ)σ

by induction on t and τ .

• J u∗[φ] K = J u∗ K⦃ φ ⦄. In this case σ = σ1σ2 =
l1
χ1

. . .
lk
χk︸ ︷︷ ︸

occurrences in J u∗ K

lk+1

χk+1
. . .

lp
χp︸ ︷︷ ︸

occurrences in ⦃ φ ⦄

.

Then:

L J u∗[φ] Kσ M′ = L J u∗ Kσ1 M′L ⦃ φ ⦄σ2 M′

= u∗[φ]σ

by induction on u∗ and φ.

where we extend L−M′ such that:

• L ⦃ ~χp ← τ ⦄ M′ = {L J τ K M′/χp},

• L ⦃ ~xp � Ay.〈 t1, . . . , tp 〉⦃ Φ ⦄ ⦄ M′ = {(Ay.L J ti K⦃ Φ ⦄ M′)/xi}i≤p,

• L ⦃ Φ ⦄ M′ = L ⦃ φ1 ⦄ M′ . . . L ⦃ φn ⦄ M′,

• ⦃ Φ ⦄ = ⦃ φ1 ⦄ . . . ⦃ φn ⦄ where [Φ] = [φ1] . . . [φn]

Finally, since ⦃ Φ ⦄ and σ are inverse operations, we have

L J u∗ K M = L J u∗ Kσ M′Φ

= u∗σΦ

= u∗

Lemma 6.2.3 (Atomic reduction simulates ΛµS-reduction). If T −→β,µ U , then we

have L T M −→+ L U M.
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Proof. By induction on T . Recall that li
χi

means replacing χi with li fresh distinct

variables. Let σ =
l1
χ1

. . .
lp
χp︸ ︷︷ ︸

occurrences in U

, replacing the different occurrences of each free vari-

able χi with fresh, distinct variables. Let Φ = [ ~χ1
l1 ← χ1] . . . [ ~χp

lp ← χp]. We use the

induction hypothesis: if T −→β,µ U , then L Tσ M′ −→β,µ L Uσ M′.

• If T is a redex:

– If T = (λx.U)V −→β U{V/x}, then (suppose |U |x 6= 1)

L T M = (λx.L Uσ1 M′[ ~xp ← x])L V σ2 M′Φ

−→β L Uσ1 M′[ ~xp ← L V σ2 M′]Φ

= L U{V/x} M

– Similar for the other redexes.

• If T = @(U, τ) −→β,µ @(U ′, τ), then

L T M = @(L Uσ1 M, L τσ2 M)Φ

−→+ @(L U ′σ1 M′, L τ M′σ2)Φ

= L @(U ′, τ)σ M′Φ

= L @(U ′, τ) M

• If T = Ax.U −→β,µ Ax.U ′, then (suppose |U |x 6= 1)

L T M = (Ax.L Uσ M′[ ~xp ← x])Φ

−→+ (Ax.L U ′σ M′[ ~xp ← x])Φ

= L (Ax.U ′)σ M′Φ

= LAx.U ′ M

Theorem 6.2.4 (Confluence of ΛµSa). Let t, u, v ∈ ΛµSa. If t −→∗β,µ,s u and t −→∗β,µ,s v,

there exists w ∈ ΛµSa such that u, v −→∗β,µ,s w.
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t

u v

w

∗∗

∗ ∗

Proof. Suppose t −→∗ u and t −→∗ v. Then in ΛµS we have J t K −→∗ J u K and

J t K −→∗ J v K. By confluence of ΛµS, there exists W ∈ ΛµS such that: J u K −→∗ W
and J v K −→∗ W . Let u0, v0 be the sharing normal forms of u, v. Then we have

L J u K M = u0 and L J v K M = v0. Then, applying L−M to J u K gives: u0 −→∗ LW M and

v0 −→∗ LW M. Combined, we get confluence, i.e. u, v −→∗ LW M.
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Chapter 7

Fully-lazy sharing

The atomic λµ-calculus satisfies fully-lazy sharing (in the sense of Wadsworth [Wad71]),

which restricts duplication of subexpressions to skeletons, the remaining maximal free

subexpressions (or constants) staying shared and being lifted outside the scope of the

closure instead. The maximal free subexpression corresponds to the largest portion

of a term t that can be shared and eventually only evaluated once, leaving the rest

(skeletons) to be duplicated.

Let V be a set of (λ and µ) variables. Let t∗, s∗ ∈ ΛµSa. A V-free subexpression s∗

of t∗ is a subexpression of t∗ such that FV (s∗) ⊆ FV (t∗)\V. A V-free subexpression

is maximal when for any V-free subexpression r∗ of t∗, s∗ is not a subexpression of

r∗. A free subexpression s∗ of t∗ is a ∅-free subexpression of t∗. Intuitively, a free

subexpression s∗ of t∗ is such that t∗ = u∗{s∗/χ} for some u∗, the substitution not

capturing any variable. It follows that the duplication [χ′1, . . . , χ
′
p ← t∗] becomes

{u1/χ
′
1} . . . {up/χ′p}[χ1, . . . , χp ← s∗], where ui are variants of u that will be defined

later. A maximal free subexpression s∗ of t∗ is the biggest subexpression of t∗ such

that if a bounded variable x of t∗ appears in s∗, then the binder Ax also appears in s∗.

Definition 7.0.1. A maximal free subexpression s∗ of λx.t (resp. µα.t) is a maximal

x-free (resp. α-free) subexpression of t∗.

The intuition is that if we want to duplicate λx.t (resp. µα.t), we can push the “con-

stant” expressions (corresponding to maximal free subexpressions) towards the outside.

The remaining parts, including the bound variable x (resp. α), will be duplicated.

Definition 7.0.2. A fresh variant t∗i of an expression t∗ replaces occurrences of vari-

ables χ of t∗ by fresh variables χi.
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Definition 7.0.3. • Let u∗1, . . . , u
∗
k be the maximal free subexpressions of an ab-

straction Ax.t. The skeleton of an abstraction Ax.t is a term Ax.t′, where t′

is obtained from t by replacing u∗i by fresh variables χi (or αj). Thus Ax.t =

(Ax.t′){u∗i /χi}i≤k.

• Let χ, ~χp be variables in T ∪ S, and let t∗, u∗ ∈ T ∪ S be terms or streams. The

V-skeleton skelV(t∗) of a basic expression t?, where V is a set of variables such

that none is bound in t? is:

skelV(χ) = χ

skelV(Ax.t) = Ax.(skelV∪{x}(t)[x1, . . . , xk ← x])

skelV(@(t, u∗)) =


χ′ : if FV (@(t, u∗)) ∩ V = ∅
@(skelV(t), χ′) : if FV (u∗) ∩ V = ∅
@(y, skelV(u∗)) : if FV (t) ∩ V = ∅
@(skelV(t), skelV(u∗)) : otherwise

skelV(t∗[ ~χp ← u∗]) =


χ′ : if FV (t∗[ ~χp ← u∗]) ∩ V = ∅
skelV(t∗) : if FV (u∗) ∩ V = ∅
(skelV∪{ ~χp}(t

∗))σ : otherwise

where y, χ′ are fresh variables, and the variants xi come from the substitutions

σ. The substitution σ = {(skelV(u∗))i/χi}i≤p.

• The skeleton skel(t∗) of an expression t∗ is skel∅(t∗).

We now show the core lemma for full-laziness:

Lemma 7.0.4. Let V be a set of variables, let t∗, u∗ ∈ ΛµS−a be terms or streams, let

χi, χ
′
j be variables.

An expression u∗[ ~χp ← t∗] can be reduced to u∗{skelV(t∗)i/χi}i≤p[Γ][∆] where Γ gath-

ers all the sharings of the form [ ~χ′k ← χ′] for each χ′ ∈ FV (t∗) ∩ V.

Proof. By induction on t. Let v∗, w∗ ∈ T ∪ S be terms or streams, let χ, χk, χ
′
l be

variables in T ∪ S.

• Let t = χ. Then

u∗[ ~χp ← χ] =α u
∗{χi/χi}i≤p[ ~χp ← χ]

= u∗{skelV(χ)i/χi}i≤p[ ~χp ← χ]
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• If t = Ax.v, let s = skelV∪{x}(v). Then

u∗[ ~xp ← Ax.v] −→s u
∗[ ~xp � Ax.〈 ~yp 〉[~yp ← v]]

−→∗s u∗[ ~xp � Ax.〈 ~sp 〉[~zk ← x][Γ][∆]]

(by induction hypothesis)

−→∗s u∗[ ~xp � Ax.〈 ~sp 〉[~zk ← x]][Γ][∆]

−→s u
∗{Axi.si[~zil ← xi]/xi}i≤p[Γ][∆]

(by distributor elimination)

= u∗{(skelV(λy.v))i/xi}i≤p[Γ][∆]

where zk and zl are as in the distributor elimination rule.

• Let t = @(v, w∗).

– Suppose FV (v) ∩ V 6= ∅ and FV (w∗) ∩ V = ∅. Then:

u∗[ ~χp ← @(v, w∗)] −→s u
∗{@(yi, χ

′
i)/χi}i≤p[~yp ← v][ ~χ′p ← w∗]

−→∗s u∗{@(yi, χ
′
i)/χi}i≤p{skelV(v)i/yi}i≤p

{skelV(w∗)i/χ′i}i≤p[Γ][∆]

(by induction hypothesis)

= u∗{@(skelV(v)i, skelV(w∗)i)/χi}i≤p
[Γ][∆]

– The three remaining cases are proved similarly.

• Let t = w∗[ ~χ′m ← v∗]. Let σ = {(skelV(v∗))j/χ′j}j≤m.
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– Suppose FV (w∗) ∩ V 6= ∅ and FV (v∗) ∩ V 6= ∅. Then:

u∗[ ~χp ← w∗[ ~χ′m ← v∗]] −→s u
∗[ ~χp ← w∗][ ~χ′m ← v∗]

−→∗s u∗{(skelV∪{ ~χ′m}(w
∗))i/χi}i≤p[ ~χ′1k1 ← χ′

1] . . .

[ ~χ′
mkm

← χ′
m][Γ1][∆1][ ~χ′m ← v∗]

(by induction hypothesis)

−→∗s u∗{(skelV∪{ ~χ′m}(w
∗))i/χi}i≤p[ ~χ′1k1 ← (skelV(v∗))1]

. . . [ ~χ′
mkm

← (skelV(v∗))m][Γ1][∆1][Γ2][∆2]

−→∗s u∗{(skelV∪{ ~χ′m}(w
∗)σ)i/χi}i≤p[Γ3][∆3]

[Γ1][∆1][Γ2][∆2]

= u∗{(skelV(w∗[ ~χ′m ← v∗]))i/χi}i≤p[Γ][∆]

where [Γ] = [Γ1][Γ2][Γ3] and [∆] = [∆1][∆2][∆3]. We use the fact that skelV
is idempotent.

– The other cases are shown similarly.

Note that ∆ gathers the maximal free subexpressions, which then remain shared,

whereas skeletons are duplicated. This proof shows a fully-lazy strategy, in which

basic expressions (inside closures) get reduced to basic expressions, such that intro-

duced distributors are eliminated. The strategy is to first push closures outside of the

expression before performing duplications. Non-basic expressions (distributors) appear

when reducing basic expressions, so we can start from basic expressions (and eventually

we remove distributors).

From this lemma, we can conclude:

Theorem 7.0.5. The atomic λµ-calculus satisfies fully-lazy sharing.
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Chapter 8

Conclusions

In this section, we discuss the more general conclusions and perspectives to be drawn

from our work. We give a brief summary of our results, then we address some possible

future perspectives.

8.1 Results

In this thesis we have combined the λµ-calculus [Par92] and the atomic λ-calculus

[GHP13] to construct the atomic λµ-calculus. For explicit sharings to behave well

during µ-reduction, we work on a variant of the calculus using streams. As for the

atomic λ-calculus, since atomic duplications correspond to the medial rule which bears

no resemblance to any sequent calculus rule, deep inference methodology is the most

natural way to describe terms and reductions. Therefore we use the most general

formalism, open deduction, to type terms of the calculus. Following the correspondence

of the λµ-calculus with classical logic, we first attempt to build a multiple conclusion

system, which unfortunately leads to many seemingly superfluous steps and creates

additional bureaucracy between disjunctions and meta-disjunctions to distinguish the

main formula in a conclusion. Observing the symmetry between λ and µ, and the fact

that multiple conclusions come with µ-variables that are not yet bound, we retrieve a

single-conclusion system by “hiding” those variables until they get bound, and obtain

a µ-abstraction rule very similar to that for λ-abstraction. We finally show that types

are preserved under reduction.

Our main result for this calculus is preservation of strong normalization, ensuring

that ΛµS-terms that always terminate remain that way in the atomic λµ-calculus.

In particular PSN would have been shown if a reduction step in the atomic calculus
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coincided with at least a reduction step in the ΛµS-calculus, but this is not true for two

reasons. The first reason has to do with sharing reductions, which correspond to zero

steps in the ΛµS-calculus. This is not problematic since sharing reduction is strongly

normalizing, therefore infinite paths must come from λ or µ-reductions. The proof

for the strong normalization of sharing reductions differs from the atomic λ-calculus

proof in [GHP13], being more faithful to the semantics i.e. graphs mapping onto terms.

The idea is to construct a strictly decreasing measure, keeping track of weakening

reductions, the number of duplications of subterms, the number of closures, and the

lengths to reach closures. In particular weakening reductions are strongly normalizing.

The second reason is that infinite reductions can happen inside weakenings of atomic

terms, which are then discarded in their interpretation in the ΛµS-calculus. We need to

show that starting from a ΛµS-term we cannot fall into that situation, i.e. if we get an

infinite reduction inside a weakening in the atomic calculus, this infinite reduction could

have remained outside the weakening all along, and its counterpart in the ΛµS-calculus

would have had an infinite path as well. To do that we introduce an intermediate

calculus, the ΛµS-calculus with explicit weakenings, and split PSN into two parts,

PSN between the weakening calculus and the atomic calculus, and PSN between the

ΛµS-calculus and the weakening calculus. The way we designed the weakening calculus

is such that the former part is satisfied. The latter part requires defining an exhaustive

reduction strategy ensuring that an infinite path in the weakening calculus is found

should it exist, and stays infinite when translated back to the ΛµS-calculus. Our

strategy is more general than the presentation from [GHP13], and helps understand

better the properties of the weakening calculus. Therefore whenever a ΛµS-term is

strongly normalizing, we show that the perpetual strategy of its translation in the

weakening calculus terminates, making the weakening term strongly normalizing as

well.

Other results we show are confluence and full-laziness, making the atomic λµ-calculus

an efficient model for programming languages.

8.2 Next steps

Regarding ways to build upon our work, there are three possible directions. Firstly,

we could apply our techniques to investigate the implementation of a wider range of

side-effects and handlers, as with algebraic effects [FS14]. Secondly, concerning atomic

calculi, further work is in the direction of capturing optimality by considering the two

further medial rules of intuitionistic deep inference. Lastly, we could move towards
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implementation. A efficient implementation is currently studied through Sherratt’s

directed atomic λ-calculus. Sharing reductions are not local, since some rules can only

be applied on subterms after inspecting larger subterms (typically to check whether a

variable is free or bound), which makes implementation more complicated. By using

director strings [KS88] and therefore keep track of free variables, the directed atomic

λ-calculus aims to give an efficient [SFM03] (i.e. keeping full laziness) implementation

of the atomic λ-calculus.
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