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Abstract

In this talk, we wish to discuss an ongoing work on the infinitary calculus arising from the Λµ-calculus.
In contrast with usual λ-calculus which gives rise to infinite terms, the Λµ-calculus, as well as related
calculi, gives rise to transfinite terms, that is, to infinite terms having subterms not only at finite positions,
but also at infinite positions.

After some background on Λµ, we motivate the appearance of transfinite terms and compare (and
contrast) with the work by Ketema et al. [7], the only work, to our knowledge, addressing rewriting
theory for transfinite terms.

This talk proposal is concerned with ongoing work and, as such, it raises many more questions than
it addresses. Still, we think it provides motivations for the study of transfinite calculi as well as some
criteria for designing infinitary calculi.

1 Introduction

Infinite λ-terms arise naturally in the theory of (finite) λ-calculus, for instance from the consideration of
Böhm trees or other Böhm-like trees [3] which can be understood as infinite normal forms for various notions
of convergence. Infinitary λ-calculi [6, 1] thus extend traditional λ-calculus with infinite terms and possibly
transfinite reductions [5].

The λµ-calculus [9], a λ-calculus originating in the study of the computational content of classical reasoning,
has a somehow different connection with infinity. Indeed, µ-abstraction abstracts over evaluation contexts,
or continuations, and can thus be viewed as potentially infinitary λ-abstractions. This is emphasized by
reduction:

µα.y −→n
fst λx1 . . . xn.µα.y x1, . . . , xn 6= y

where n is arbitrary.
This viewpoint on µ-abstraction as stream abstraction [10, 12] leads to a natural infinitary extension of

the Λµ-calculus where terms may have subterms at infinite positions, that is, to a transfinite calculus.
In their survey of infinitary λ-calculus, Barendregt and Klop [1] mention four main motivations for the

studies of infinitary λ-calculi: (i) semantics of λ-calculus, (ii) pragmatics of computing with λ-terms, (iii)
expressivity and (iv) theoretical coherence and transparency.
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The same four motivational themes guide our work on a transfinite foundation for Λµ-calculi. Our talk
could thus quite reasonably be organized along those four lines which motivate us to study transfinite λ-calculi
in order to understand Λµ(-like) calculi1:

1. Semantics. Even though viewing Λµ-calculus as a stream calculus dates back to the separation
proof [10], the true connection with transfinitary calculi really comes from the study of Λµ-Böhm trees
(see below). Other recent semantics on Λµ-calculus also point towards transfinite calculi (See Nakazawa
stream-models for Λµ in [8] for instance);

2. Pragmatics. Transfinite reduction sequences already make much sense for λ-calculus. Here, we have a
slight change of perspective on them: having stream-like abstractions, we have an abstraction to pass
infinitely many arguments through a data-abstraction. Moreover, with Λµ-calculus, standard results
from infinitary λ-calculi, such as the compression lemma, shall be reconsidered.

3. Expressivity. Input streams have no reason to be recursive (think that they can typically come from a
physical device, activity on a network, ...) and can be truly infinite. Thus, they cannot be represented
by finite Λµ-terms, but can be treated by a finite Λµ-term.

4. Theoretical coherence and transparency. Λµ-calculus results from an attempt to fix a problem with
the λµ-calculus, namely its first notable negative result: the failure of Böhm theorem in Parigot’s
calculus as shown by David and Py [2]. Λµ-calculus constitutes a Böhm-complete calculus extending
Parigot’s calculus in a minimal way. The frontier between a calculus satisfying Böhm theorem and
a calculus in which the property does not hold is often very tight and we hope that considering the
calculi in a uniform framework of infinitary calculi can give us some tools to view more clearly what is
going on there. The uniformity of the infinitary framework should indeed be useful to understand the
expressiveness of various levels of the stream hierarchy [11], or if a separation theorem holds.

The remaining of this abstract consists in a brief review on Λµ and Λµ-Böhm trees, followed by a recall
on the approach of Ketema et al. approach to transfinite rewriting. In the final section we will list some
questions we are willing to discuss at the workshop and contrast our approach with respect to usual approach
to infinitary (and transfinitary) λ-calculi.

2 From (finite) Λµ to transfinite terms via Λµ-Böhm trees

Λµ-calculus Λµ-calculus is a slight variant of Parigot’s λµ-calculus introduced in the early 90’s to provide
a term calculus for classical proofs. It appeared at several occasions in the literature but was systematically
studied and recognized as a proper calculus after it appeared that, contrarily to the original calculus [2], Λµ
satisfies Böhm theorem [10].

Definition 2.1. Λµ-terms are inductively defined by the following syntax:

Λµ : t ::= x | λx.t | (t)u | µα.t | (t)α

(λ-variables are denoted by x, y, h . . . and µ-variables by α, γ, θ . . . )

Λµ-calculus reductions contain usual β and η rules from λ-calculus, corresponding βη-rules for µ-abstraction
as well as a rule connecting the two categories of objects, terms and streams (for which λ and µ-variables
stand respectively), on which Λµ is built:

µα.t −→fst λh.µθ.t{(u)hθ/(u)α} h, θ 6∈ FV(t)

1It should be noted, though, that the connections between Λµ-calculus and infinitary calculi are slightly different from that
of ordinary λ-calculus.
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This rule shall be understood as the rule for observing streams via pattern-matching, where h stands for
the head of the stream and θ for the tail. As such, rule fst naturally suggests an infinitary interpretation of
µ-abstraction as an infinitary λ-abstraction:

µα.t ∼ λ(xαi )i∈ω.t{(u) xα0x
α
1 . . . /(u) α}

In Λµ, streams are only inhabited by variables, which makes it a bit trivial. It is however easy to inhabit
them with constructed streams by slightly extending the calculus (see for instance [4] in this direction):

Terms t ::= x | λx.t | (t)u | µα.t | (t)S
Streams S ::= α | [t|S]

Λµ-Böhm trees The above intuition is made more precise when considering Böhm trees (as well as
Nakajima trees) for Λµ-calculus (see [12] for details):

Definition 2.2. Böhm trees for Λµ-calculus (B ∈ Λµ-BT) are (coinductively) defined as follows:

B ::= Ω | Λ(xi)i∈µ∈ω2 .(y)(Bj)j∈λ∈ω2

Nakajima trees for Λµ-calculus (N ∈ Λµ-NT) are (coinductively) defined as follows:

N ::= Ω | Λ(xi)i∈ω2 .(y)(Nj)j∈ω2 .

Example 2.3. Let t = µα.λx.µβ.λy.((x)y ((∆)∆)β) β. B = Λ(zi)i∈ω·2+1.(zω)(Bj)j∈ω with

• B0 = zω·2,

• B1 = Ω and

• Bj+1 = zω·2+j for 1 ≤ j < ω.

Böhm trees for the Stream hierarchy [11] uniformly generalize Λµ-Böhm trees with the following coinductive
definition:

Bn ::= Ω | Λ(xi)i∈µ∈ωn+1 .(y)(Bn
j )j∈λ∈ωn+1

(λ corresponds to instantiating n with 0, Λµ by instantiating n with 1.)
This shows that the ω2 bound is only due to µ-abstraction, a contingent phenomenon...

Transfinite terms While usual infinitary systems allow terms having infinitely many subterms at arbitrarily
large finite depth, they do not allow subterms at infinite depth. Λµ-Böhm trees, described above, clearly
suggest that one should have subterms at infinite depth when interested in the Λµ-calculus.

To our knowledge, there is only one work which considers the possibility to have such transfinite terms,
namely Ketema et al. paper on transfinite term rewriting [7]. We briefly recall the main characteristics of
their approach. Essentially a transfinite term is a labelling function t of a set of transfinite positions, where
transfinite positions are maps p from an ordinal α, its length, to the natural numbers. The labelling function
shall satisfy several conditions, some being usual (t is prefix closed, the arity of a label at position p induces
the number of positions immediately extending p where t is defined), and some are specific to transfinite
terms, typically that if the length of p is a limit ordinal, then t is defined at p if t is defined at q, ∀q < p.
We denote by Pos(t) the domain of t. This allows to consider terms like (f1(f2(f3(. . . x)))), which are not
infinite terms but transfinite terms.

A transfinite Term Rewriting System (tTRS) is a pair (Σ′, R), where Σ′ is a set of symbols of finite arity
and R is a set of transfinite rewrite rules, that is a set of pairs l→ r of finite terms 〈l, r〉 such that l is not a
variable and any variable occurring in r also appears in l. Transfinite rewrite steps can then be defined in a
quite standard way rewriting a transfinite term s = C[σ(l)] into t = C[σ(r)] if l→ r ∈ R, C[�] is a one-hole
context and σ a substitution.
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3 Transfinite terms and Λµ

With the previous definitions and remarks, it is not difficult to have an idea on how Λµ-calculus could fit in
the picture. Still, there are several difficulties to be considered:

• The natural transfinite analog to µα.(x) α is λxα0x
α
1 . . ..(x) xα0x

α
1 . . .. One sees two cases of infinity

embodied in each “. . . ”. The problem here is while the infinite sequence for abstraction variables
goes down, as usual, the one for applied variables goes up and this is not well suited with the above
definitions. This is however easily taken care of by the introduction of streams in the syntax and we
will present a suitable notion of transfinite terms for Λµ.

Still, even at the level of the notion of transfinite terms, some differences with the modelling by Ketema et al.
arise:

• Compared with usual infinite λ-calculi where infinite terms arise from the sole iteration of β-rules,
we see here a possible interaction between β and fst. Since the computational content of fst is quite
poor, it can be considered statically and should maybe be considered on different grounds than infinite
normal forms arising from β-reductions. An additional hint that something is going on there is that the
modelling of transfinite terms by Ketema et al. only works for our setting if we consider transfinite
terms solely generated by fst: as soon as β enters the picture, one has to remove the restriction that
a subterm at limit ordinal shall be defined as soon as all its (infinite) prefixes are defined. Think of
µα.(Y ) λf x.f .

Things are more open when dealing with reduction sequences:

• As noticed by Ketema et al., the usual approach to the convergence of infinitary reduction sequences
based on a suitable notion of metrics on terms or on the sequence of depths of fired redexes is problematic
with transfinite terms. In our setting, we face an even more problematic situation since one is expecting
that the transfinite counterpart of µβ.(µα.x) β converges to λxβ0x

β
1 . . ..x after ω steps occurring at

depth... ω. No notion of strong convergence can be used here and it is easy to find variants of this
example where the depth of the first difference between terms in the sequence stays at a constant depth
all along the infinite reduction.

In addition to the problem with the topological modelling required to provide a good notion of limit on
transfinite reduction sequences, it seems to us that Ketema et al. approach is not precisely what we need for
modelling the Λµ-calculus:

• For instance, the push down and pull up properties certainly make sense in our setting, but in a slightly
different meaning: an infinite reduction sequence of fst starting on µα.x:

µα0.x −→fst λx
α
0 .µα1.x −→fst λx

α
0 x

α
1 .µα2.x −→fst . . . −→fst λx

α
0 x

α
1 . . . x

α
n .µαn+1.x −→fst . . .

converging to λxα0x
α
1 . . . x

α
n . . ..x. This reduction certainly pushes down variable x: is it not at finite

depth at all finite prefixes of the reduction while at depth ω at the limit?

However, according to Ketema et al.’s definition of push-down/pull-up properties, we should reach after
ω steps the term λxα0x

α
1 . . . x

α
n . . ..µα.x. In our case, µ-abstraction disappeared at the limit, or shall we

say, it ran out of fuel.

4 Conclusion and perspectives

It is certainly not time to conclude: at the time being, our work raises many more questions than it addresses
and so does this abstract. We precisely hope that discussions on the workshop will suggest us ideas to pursue
our work and can in turn stimulate other participants to look in this direction.
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To finish on a perspective, we think that understanding the structure of the infinitary calculi induced by
calculi such as Λµ can teach us a lot about properties such as separability. Already in the case of Böhm
trees can we see intriguing phenomena: Λµ-BT for λµ-terms have (up to finitely many ηS-expansions) the
following structure:

Bλµ ::= Ω | x | Λ(xi)i∈ω.(y)(Bλµ
j )j∈ω

One can observe that there is no freedom on the arity in these Böhm trees: the index is always ω and the
arities are forced to match. This witnesses, directly in the structure of Böhm trees, the failure of separation
theorem for λµ-calculus.

Acknowledgements The second author wants to thank Jeroen Ketema for pointing him to [7].
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