
On the characterization of the Taylor Expansion

of λ-terms

Fanny He
Lmfi- Paris VII

09/10/2012

Contents

1 Introduction 2

2 Introduction to the λ-calculus 4

2.1 Syntax . 4
2.2 Free and bound variables, α-equivalence 4
2.3 Substitution . 6
2.4 β-reduction, β-normal form . 7
2.5 Solvability, head normal form . 9

3 Böhm Trees resulting from λ-terms 11

3.1 Recall on Böhm trees . 11
3.2 Towards the characterization theorem 13

3.2.1 Ideal . 13
3.2.2 A �nite set of free variables 14
3.2.3 Recursive enumerability 15

3.3 The characterization theorem . 17

4 Coherent spaces resulting from resource terms 21

4.1 Taylor Expansion . 21
4.1.1 Introduction to resource λ-calculus 21
4.1.2 Linear combinations and reduction 21
4.1.3 Taylor Expansion . 23

4.2 Towards the characterization theorem for resource calculus . . . 24

1

Acknowledgement

I would like to thank my supervisors, Pierre Boudes and Michele Pagani, for
their enlightened guidance and the many insightful comments they made during
the course of the internship. The interest they showed, as well as the many
discussions we had, are a precious teaching I will not forget. I feel indebted to
many other people that I would like to thank, especially Etienne Duchesne and
Giulio Manzonetto, and Thomas Ehrhard and Alexis Saurin who �rst introduced
me into λ-calculus, and were able to communicate their passion for this �eld.
Completing this work would have been all the more di�cult were it not for the
kindness and support provided by the other members of the LIPN.

1 Introduction

The lambda-calculus was invented by Alonzo Church in the thirties, as a way to
describe computable functions, alongside the recursive functions and the Turing
machines. It eventually turned out that the three models are equivalent, and
the Church-Turing thesis stipulates that they capture the intuitive notion of
computable function. Although the model of Turing machines is a natural way
to describe the computational processes, their real interest lies in the abstraction
of the machine model, allowing to describe a universal notion of complexity and
computability. Likewise, the interest of the λ-calculus lies in the abstraction of
the essential features of functional programming, on which it allows to reason
and prove properties. This core of programming features can be extended to
match closely real-world programming languages, such as PCF (Programming
with Computable Functions) [Plot], and recent work tend to close the gap with
mainstream languages [Guha, Rey]. It is di�cult to prove safety properties on
these languages, making debugging hard, and therefore programs less reliable;
an issue of increasing importance considering the growing number of human
lives depending on computers. Giving proper semantics to general purpose
programming languages will thus allow to build safer programs, and publish
research papers.

In the λ-calculus, we study the interaction of functional abstraction and function
application from an abstract, purely mathematical point of view: a term of λ-
calculus can be a variable, an abstraction, or an application. An abstraction
formalizes a function, while an application provides a term with an e�ective
argument. A computation consists of rewriting a λ-term by the β-reduction
rule, which applies the function to its arguments; one step is an atomic operation
which substitutes globally all occurrences of a bound variable for a term. A λ-
term can encode a partial function, and therefore the sequence of rewriting may
converge to a result, or diverge. Böhm trees, in�nite trees that describe the
interaction of a λ-term with the external environment, were introduced in order
to study the convergence of λ-terms. An important step towards the formal

2

veri�cation of programs is to be able to quantify the resource consumption of
programs; however the β-reduction does not give information that quanti�es
resource consumption.

The λ-calculus with resources was introduced to decompose the evaluation of
λ-terms, thus helping describe their resource consumption. In the resource λ-
calculus, the application takes as function a resource λ-term and as argument
a multiset of resource λ-terms. If the term is an abstraction, and the bound
variable occurrences are in bijection with the multiset, then it can be reduced:
the reduction nondeterministically assigns each element of a multiset to an oc-
currence of the variable, and results in a multiset of resource λ-terms consisting
of all possible assignments. This reduction is linear since each argument is used
once and only once.

The Taylor expansion of a function, a concept introduced by Brook Taylor in
1715, is a representation of a function as a possibly in�nite sum of terms that are
calculated from the values of the function's derivatives at a single point. Using
a �nite number of terms of a Taylor expansion, it is possible to approximate
a function and estimate quantitatively the error in this approximation. This
concept was extended in [EhrReg3] to the λ-calculus: to any λ-term we asso-
ciate a set of λ-terms with resources, and this Taylor expansion describes the
quantitative behaviour of the resource consumption of a program. The Taylor
expansion is a quantitative re�nement of Böhm trees.

There are uncountably many sets of λ-terms with resources whereas there are
only countably many λ-terms; following this observation, we would like to char-
acterize the sets of λ-terms with resources which are the Taylor expansion of
some λ-term. The characterization of sets of λ-terms with resources approximat-
ing λ-terms is a step towards a semantic notion of resource consumption, and the
ambitious goal to give a semantics for higher order non-deterministic calculus.
This study stems on the recent advances on resource calculus [PagTas, PagMan].

First, we recall the basic notions of the λ-calculus, as well as some fundamental
theorems. In section 2, we rede�ne Böhm trees as in�nite sets of �nite approxi-
mations to have a structure closer to in�nite sets of resource terms, and obtain
a characterization theorem for this notion of Böhm tree. In section 3, we work
on resource terms and Taylor expansion of λ-terms. Following a crucial theo-
rem that links the notions of Böhm trees and Taylor expansion, we introduce
the notion of coherence to characterize some necessary conditions for a set of
resource terms to come from the Taylor expansion of a λ-term.

3

2 Introduction to the λ-calculus

In this section, we recall the basic notions of the λ-calculus, as can be found in
[Ehr, Sel].

2.1 Syntax

The expressions of the λ-calculus are called λ-terms. Let V be an in�nite (count-
able) set of variables, denoted by x, y, z . . .

De�nition 2.1. The set of λ-terms, denoted by Λ, is given by the following
grammar in Backus-Naur Form:

Λ : M, N ::= x | (M)N | λx.M

Terms of the form x are called variables, (M)N applications, and λx.M λ-
abstractions (short abstractions).

An equivalent de�nition would be the following. Let A = V ∪ {(,), λ, .} be an
alphabet, and A∗ the set of �nite sequences over A. Then the set Λ ⊂ A∗, is
the smallest subset of A∗ such that x ∈ Λ for all x ∈ V, if M , N ∈ Λ then
(M)N ∈ Λ, and if x ∈ V, and M ∈ Λ then λx.M ∈ Λ. As the Backus-Naur
Form is more convenient, we will always introduce syntactic de�nitions in this
form.

Example 2.2. Here are some examples of λ-terms:
λx.x, λx.(x)x, (λx.(x)x)λy.(y)y.

Remark 2.3. For the sake of readability, we apply the following conventions:

• Applications associate to the left: we write (M)NP instead of ((M)N)P .
We extend this to n ∈ N applications: we can write (M1)M2 . . .Mn instead
of (. . . ((M1)M2) . . .)Mn.

• We can add some parenthesis to underline the structure of a λ-term. For
example, we can write (λx.(x)x)(λx.(x)x) instead of (λx.(x)x)λx.(x)x.

• We write λx1 . . . xn.M instead of λx1 . . . λxn.M .

• For a term M , we write (M)2N instead of (M)(M)N . More generally, we
write (M)nN instead of (M) . . . (M)︸ ︷︷ ︸

n times

N .

Example 2.4. We write λf x.(f)2x instead of λf.λx.(f)(f)x.

2.2 Free and bound variables, α-equivalence

The terms I = λx.x and λy.y, both represent the identity application i : x 7−→ x,
thus are intuitively equivalent. We therefore formalize this notion of equivalence.

4

De�nition 2.5. An occurrence of the variable x ∈ V inside a term of the form
λx.M is bound.

In this case, we say that λx is the binder, and thatM is the scope of the binder.

De�nition 2.6. If a variable occurrence is not bound, it is free. For every
M ∈ Λ, FV (M) is the set of free variables ofM , de�ned by structural induction:

• FV (x) = {x},

• FV ((M)N) = FV (M) ∪ FV (N),

• FV (λx.M) = FV (M)\{x}.

Example 2.7. In the term M = (λx.((x)λy.(y)x))x, the occurrence of y is
bound, the two �rst occurrences of x are bound, but the third occurrence of x
is free. The set of free variables of M is {x}.

De�nition 2.8. A term M is closed if FV (M) = ∅ and Λ0 is the set of closed
λ-terms.

In order to formalize the notion of equivalence, we have to de�ne what it means
to simply rename a variable in a λ-term. Let M,N be two λ-terms. If M and
N are identical, we write M ≡ N .

De�nition 2.9. Let y be a variable andM be a λ-term. We say that y belongs
to M whenever it appears in M .

De�nition 2.10. Let x, y be two variables and M be a λ-term. By induction
on M , we de�ne the renaming of x as y in M :

• x� y/x�≡ y,

• z � y/x�≡ z if x 6= z,

• (M)N � y/x�≡ (M � y/x�)N � y/x�,

• (λx.M)� y/x�≡ λy.(M � y/x�),

• (λz.M)� y/x�≡ λz.(M � y/x�), if x 6= z.

Example 2.11. We have (λy.x)� y/x�≡ λy.x� y/x�≡ λy.y.

We remark that this kind of renaming replaces all occurrences of x by y, whether
x is free or bound. We can now formally characterize what it means for two
terms M,N to be the same, modulo the renaming of bound variables.

De�nition 2.12. Let R be a relation between λ-terms. We recall that R is an
equivalence relation if it satis�es these three rules:

Re�exivity:
M RM

Symmetry:
M RN

N RM
Transitivity:

M RN N R P

M R P

We say that R is λ-compatible if it satis�es these two rules:

5

M RM ′ N RN ′

(M)N R (M ′)N ′
M RM ′

λx.M R λx.M ′

Finally, R is a congruence if it is an equivalence and if it satis�es λ-compatibility.

De�nition 2.13. The α-equivalence is the smallest congruence relation =α on
λ-terms, satisfying the following rule:

y 6∈M
λx.M =α λy.(M � y/x�)

Remark 2.14. We will always use Barendregt's variable convention, which
assumes without loss of generality that bound variables have been renamed to
be distinct.

Example 2.15. We have (λx.(x)x)λy.(y)y =α (λx.(x)x)λx.(x)x.

2.3 Substitution

After having de�ned a renaming operation, we turn to a less trivial operation,
called substitution. Considering a variable y and two terms M,N , we would
like the substitution M{N/x} to satisfy two conditions:

• Only the free occurrences of x should be replaced, as the names of bound
variables should not e�ect the result of a substitution. For instance, we
would like the result of ((x)λx.(x)y){y/x} to be (y)λx.(x)y, not (y)λy.(y)y.

• We need to avoid capturing free variables. For example, if M ≡ λx.(y)x,
and N ≡ λz.(x)z, we want the free occurrence of x in N to remain free in
M{N/y}. In order not to capture a free variable, we rename the bound
variable before the substitution:

M{N/y} =α (λx′.(y)x′){N/y} ≡ λx′.(N)x′ ≡ λx′.(λz.(x)z)x′

Remark 2.16. In the substitution operation, we often have to rename a bound
variable x by the name of a variable which has not been used yet. That is why
we need the set V of variables to be in�nite. We say that we use a fresh variable
to rename x.

Now we formally de�ne the notion of substitution:

De�nition 2.17. The substitution of N for free occurrences of x inM , denoted
by M{N/x}, is de�ned as follows:

• x{N/x} ≡ N ,

• y{N/x} ≡ y if x 6= y,

• ((M)P){N/x} ≡ (M{N/x})P{N/x},

6

• (λx.M){N/x} ≡ λx.M ,

• (λy.M){N/x} ≡ λy.(M{N/x}) if x 6= y and y 6∈ FV (N),

• (λy.M){N/x} ≡ λy′.(M � y′/y � {N/x}) if x 6= y, y ∈ FV (N), and y′

fresh.

Example 2.18. (λy.x){y/x} ≡ λy′.x� y′/y � {y/x} ≡ λy′.y.

The substitution is well-de�ned modulo α-equivalence. From now on, we identify
λ-terms modulo α-equivalence, and use indi�erently = or =α.

2.4 β-reduction, β-normal form

We evaluate λ-terms by applying functions to arguments; this process is called
β-reduction. A redex (or β-redex) is a term of the form (λx.M)N . The β-
reduction, is a process that reduces a redex (λx.M)N to M{N/x}. Each step
of β-reduction is denoted by −→β . A term without any redexes is in β-normal

form (short normal form).

De�nition 2.19. Formally, a single-step β-reduction, denoted by −→β , is the
smallest relation on λ-terms which satis�es the rules:

(λx.M)N −→β M{N/x}
M −→β M

′

(M)N −→β (M ′)N

N −→β N
′

(M)N −→β (M)N ′
M −→β M

′

λx.M −→β λx.M ′

Example 2.20. We have M = ((λx.(x)x)λy.y)y −→β ((λy.y)λy.y)y −→β

(λy.y)y −→β y. The last term, y, has no redexes and thus is in normal form.

Example 2.21. The term Ω = (λx.(x)x)λx.(x)x reduces to itself, thus Ω does
not reduce to a normal form.

Example 2.22. The term Y = λf.(λx.(f)(x)x)λx.(f)(x)x is such that Y −→β

λf.(f)(λx.(f)(x)x)λx.(f)(x)x −→β λf.(f)(f)(λx.(f)(x)x)λx.(f)(x)x . . . , thus
Y does not reduce to a normal form.

Example 2.23. Let Y ′ = (λx.z)Y . Then Y ′ can have in�nite reductions like,
for any n ∈ N, (λx.z)(λf.(f)(f)n(λx.(f)(x)x)λx.(f)(x)x), if at each step we
reduce the redex (λx.(f)(x)x)λx.(f)(x)x. But Y ′ can also have a reduction that
erases all redexes, by considering the redex (λx.z)Y , giving the normal form z.
We see in this example that di�erent reductions can start from a single term,
depending on which redex to reduce. Furthermore, the con�uence theorem (in
[Ehr] Theorem 1.2.10, 2.34, 2.32) will prove that eventually that if there exists
a normal form, then it is unique, and furthermore all sequences of reductions
can always be completed to reach the normal form.

7

De�nition 2.24. The relation �β is the re�exive transitive closure of −→β ,
therefore M �β M ′ if M reduces to M ′ in 0 or more steps. The re�exive
transitive symmetric closure of −→β , called β-equivalence, is written =β .

Example 2.25. We have (λyx.(y)x)λz.z −→β λx.(λz.z)x −→β λx.x, we write
(λyx.(y)x)λz.z �β λx.x, and λx.x =β (λyx.(y)x)λz.z.

Remark 2.26. The relation =β is a congruence.

We now introduce some usual terminology of rewriting theory.

De�nition 2.27. Let R be a binary relation on a set T of terms. We call R∗

the re�exive transitive closure of R.

• t ∈ T is R-normal if there is no t′ ∈ T such that tR t′.

• t ∈ T is R-weakly normalizable if there exists a sequence t1 = t, t2, . . . , tn
such that ∀i ∈ {1, . . . , n}, tiR ti+1 and tn is R-normal. We say that tn is
a normal form of t.

• t ∈ T is strongly normalizable if there is no sequence (ti)i∈N\{0} such that
t1 = t and ∀i ∈ N\{0}, tiR ti+1.

• (T,R) enjoys weak (resp. strong) normalization if any element of T is
R-weakly (resp.strongly) normalizable.

• (T,R) enjoys strong con�uence if, for every t, t1, t2 ∈ T , if tR ti for i = 1, 2,
there exists t′ ∈ T such that tiR t

′ for i = 1, 2.

• (T,R) enjoys local con�uence if, for every t, t1, t2 ∈ T , if tR ti for i = 1, 2,
there exists t′ ∈ T such that tiR

∗ t′ for i = 1, 2.

• (T,R) enjoys con�uence if (T,R∗) enjoys strong con�uence.

Remark 2.28. Strong normalization implies weak normalization, as well as
strong con�uence implies local con�uence, but in each case, the converse is false
(see examples 2.29, 2.30, 2.31).

Example 2.29. In (Λ, β), the term (λx.z)Y is weakly normalizable to z, but
not strongly normalizable, as we have the in�nite sequence:

(ti)n∈N\{0} = ((λx.z)(λf.(f)n(λx.(f)(x)x)λx.(f)(x)x))n∈N\{0}

such that t1 = t and ∀i ∈ N\{0}, tiR ti+1, as seen in 2.23.

Example 2.30. In (Λ, β), for any n ∈ N, the term (λx.x)nλx.x is strongly
normalizable, therefore weakly normalizable.

Example 2.31. In (Λ, β), Y is not weakly normalizable, therefore not strongly
normalizable.

As some λ-terms are not weakly normalizable, (Λ, β) does not enjoy weak nor-
malization. Therefore, (Λ, β) does not enjoy strong normalization.

8

Lemma 2.32. If (T,R) enjoys con�uence, and if t ∈ T has a normal form, then
t has a unique normal form.

Proof. Let T be a set of terms, and R ⊆ T 2, such that (T,R) enjoys con�uence.
Let t ∈ T . Suppose that there exists t′, t′′ ∈ T , normal forms of t. Then t�R t

′

and t �R t′′. By con�uence, there exists t′′′ ∈ T such that t′ �R t′′′ and
t′′ �R t

′′′. However, as t′, t′′ are R-normal, then t′ = t′′ = t′′′, and we have the
unicity of the normal form.

Corollary 2.33. If the β-normal form of a λ-term exists, it is unique.

We recall the Church-Rosser theorem from [Ehr]:

Theorem 2.34. [Church-Rosser] The rewriting system (Λ, β) enjoys con�uence.

The crucial Newman's lemma follows:

Lemma 2.35. [Newman] If the relation R is strongly normalizing and locally
con�uent, then R is con�uent.

Example 2.36. The rewriting system (Λ, β) is locally con�uent, whereas the
rewriting system ({a, b, c}, {(a, b), (a, c)}) is not locally con�uent.

2.5 Solvability, head normal form

In section 3 on Böhm trees, we will see that Böhm trees are designed to under-
stand to notion of solvability. The notions of solvability and head normal form
are important, as they de�ne in the λ-calculus the notion of convergence.

De�nition 2.37. Let M ∈ Λ0. M is solvable if there exists n ∈ N, and
N1, . . . , Nn ∈ Λ, such that (M)N1 . . . Nn =β λx.x.

The closure of a λ-term M is a λ-term N such that N = λx1 . . . xn.M and N
is closed. We now consider an arbitrary λ-term:

De�nition 2.38. Let M ∈ Λ. M is solvable if a closure λx1 . . . xn.M of M is
solvable.

This is independent on the order of x1, . . . , xn.

A term M ∈ Λ is unsolvable if M is not solvable.

Example 2.39. The term K = λxy.x is solvable. We have (K)II =β I, where
I = λx.x.

Example 2.40. The term Ω = (λx.(x)x)λx.(x)x is unsolvable. For any N1, . . . ,
Nn, if (Ω)N1 . . . Nn �β M , then M = (Ω)N ′1 . . . N

′
n, with Ni �β N

′
i , for i ≤ n.

9

Remark 2.41. One can notice that a closed term M is solvable if and only if,
for any P ∈ Λ, there exists N1, . . . , Nn ∈ Λ such that (M)N1 . . . Nn =β P .

We deduce a property on unsolvability (proven in [Bar], section 8.3): if a λ-term
M is unsolvable, then so are (M)N , M{N/x}, and λx.M , for any variable x,
and N ∈ Λ.

For any M ∈ Λ, M is of one of the following two forms ([Bar] 8.3.8.):

• M = λx1 . . . xn.(x)M1 . . .Mm with n,m ≥ 0,

• M = λx1 . . . xn.(λx.M0)M1 . . .Mm with n ≥ 0,m ≥ 1.

De�nition 2.42. [Head Normal Form] Let M ∈ Λ. Then M is in head normal

form (or is a head normal form or is hnf) if M = λx1 . . . xn.(x)M1 . . .Mm,
where x is a variable, n,m ≥ 0. We call x the head variable. If M =
λx1 . . . xn.((λx.P)Q)M1 . . .Mn, we call ((λx.P)Q) the head redex of M .

We write HNF the set of head normal forms.

De�nition 2.43. The term M ∈ Λ has a head normal form if there exists a
M ′ ∈ HNF such that M =β M

′.

We now de�ne the head reduction, denoted by βh:

De�nition 2.44. Let M,M ′ ∈ Λ. Then M −→βh
M ′ if M has a head redex

and M ′ is obtained by reducing the head redex of M .

Remark 2.45. Normal forms for βh-reduction are head normal forms. The
head normal forms are the normal forms of head reduction.

Remark 2.46. The head reduction is deterministic, as at each step, there is at
most one redex to reduce.

Remark 2.47. If M �β M
′, and if M ′ is a hnf, then the head reduction on

M is �nite, and stops on a hnf N ′, which can be di�erent from M ′, because of
the arguments on the head variable, but M ′ =β N

′. We call N ′ the principal

head normal form.

Example 2.48. The term λx.(x)Y is in hnf but is not β-normalizable. Y =
λf.(λx.(f)(x)x)λx.(f)(x)x is head normalizable but not β-normalizable. Ω is
not head normalizable.

The following lemma explains how head reduction is so important. Head re-
duction is an e�ective procedure. More precisely, head reduction is an e�ective
convergent procedure:

Lemma 2.49. Let M ∈ Λ. Then M has a hnf if and only if the head reduction
path of M terminates.

We �nally recall the following theorem (in [Bar], th. 8.3.14):

10

Theorem 2.50. Let M ∈ Λ. Then M is solvable if and only if M has a hnf.

This theorem is important, as it states the equivalence of two notions: solvability
and head-normalization. Solvability gives the right notion of convergence in λ-
calculus. However, solvability is de�ned by using an existential quanti�er (see
2.37), and therefore gives no procedure to �nd, for a λ-term M ∈ Λ0, the
list of λ-terms N1, . . . , Nn such that (M)N1 . . . Nn =β λx.x. The notion of
head reduction allows to overcome the di�culty: head-reduction is an e�ective
procedure, hence the theorem says that a term is solvable if and only if such a
procedure terminates.

3 Böhm Trees resulting from λ-terms

3.1 Recall on Böhm trees

Now that we have recalled the necessary notions of λ-calculus for the next
sections, we introduce a few de�nitions related to Böhm trees and set up some
notations. We �rst introduce the notion of elementary Böhm trees (EBT's).

De�nition 3.1. EBT : b, c ::= Ω | λx0 . . . xn−1.(y)b0 . . . bk−1;

Following this de�nition, we make two observations:

Remark 3.2. By the second rule, applied to n = k = 0, variables are EBT's.

Remark 3.3. It is usual to see Ω as a constant, not in Λ, representing divergence
for β-reduction. However, when we want to have EBT ⊆ Λ, without loss of
generality, we can consider Ω = (λx.(x)x) λx.(x)x.

Remark 3.4. Actually, we will silently suppose that EBT and sets of EBT's
are de�ned modulo α-equivalence. In particular, two sets B,B′ of EBT's are
α-equivalent whenever there is a sequence σ of renaming of bound variables in
B, such that B′ = {bσ | b ∈ B}.

We now de�ne an order relation on EBT's.

De�nition 3.5. The relation v is de�ned by induction on EBT's:

• Ω v b for all EBT b;

• λx0 . . . xn−1.(y)b0 . . . bk−1 v c if c = λx0 . . . xn−1.(y)c0 . . . ck−1 with bj v
cj for all j.

Example 3.6. We have Ω v λx.(y)Ω and Ω v λx.(y)x.

Example 3.7. The order v is partial. Let y be a variable, b0 ∈ EBT: we
have (y) b0 Ω 6v (y) Ω b0 and (y) Ω b0 6v (y) b0 Ω, however (y) Ω Ω v (y) b0 Ω,
(y) Ω Ω v (y) Ω b0.

11

Our aim is now to associate with any λ-term M , a non-empty set of EBT's,
called the Böhm tree of M , denoted by BT (M). First, we de�ne a family of
functions from λ-terms to EBT's.

De�nition 3.8. For all n ∈ N, we have BTn(M):

• BT0(M) = Ω;

• BTn+1(λx0 . . . xp−1.(y)M0 . . .Ml−1) = λx0 . . . xp−1.(y)BTn(M0) . . . BTn(Ml−1);

• BTn+1(λx0 . . . xp−1.((λy.Q)R)M0 . . .Ml−1) = BTn(λx0 . . . xp−1.(Q{R/y})M0 . . .Ml−1).

Remark 3.9. We have that for all n ∈ N, BTn(M) v BTn+1(M).

We can now describe BT (M) as a map from λ-terms to sets (actually v-ideals)
of EBT's:

De�nition 3.10. Let M ∈ Λ. Then BT (M) is the v-downwards closure of
{BTn(M), n ∈ N} .

Example 3.11. There are several classic examples of Böhm trees. The trivial
one isBT ((λx.(x)x)λx.(x)x) = {Ω} = BT (λy.(λx.(x)x)λx.(x)x) = BT (((λx.(x)x)λx.(x)x)M).
Let Y be a �xed-point combinator, Y = λf.(λx.(f)(x)x) λx.(f)(x)x. Then

BT (Y) = {Ω}
⋃ ⋃
n∈N
{λf.(f)n+1Ω}.

Example 3.12. A Böhm tree has a lattice structure: any two elements have a
supremum and an in�mum (see lemma 3.18). Here is an example for the Böhm
tree of a λ-term:

BT (λx0. ((x0) λy.(x0)y) x0) ={Ω, λx0. ((x0) Ω)Ω,

λx0.((x0) λy.(x0)Ω) Ω,

λx0. ((x0) Ω) x0, λx0. ((x0) λy.(x0)y) Ω,

λx0.((x0) λy.(x0)Ω) x0, λx0. ((x0) λy.(x0)y) x0}

Ω

λx0. ((x0) Ω)Ω

λx0.((x0) λy.(x0)Ω) Ω λx0. ((x0) Ω) x0

λx0. ((x0) λy.(x0)y) Ω λx0.((x0) λy.(x0)Ω) x0

λx0. ((x0) λy.(x0)y) x0

Böhm trees have been constructed so that they remain invariant by β-reduction.
For instance, BT ((λx.x)y) = BT (y) = {Ω, y}.

12

Claim 3.13. If M =β N , then BT (M) = BT (N).

Proof. By structural induction on M , we prove that if M −→β N , then, for all
m ∈ N, there exists n ≥ m such that BTm(M) =β BTn(N) and vice versa: for
all n ∈ N, there exists m ≤ n such that BTm(M) = BTn(N).

Remark 3.14. The converse of claim 3.13 is false. There are λ-termsM,N such
that BT (M) = BT (N) but M 6=β N . For example, BT ((λx.(x)x)λx.(x)x) =
BT (λy.(λx.(x)x)λx.(x)x).

3.2 Towards the characterization theorem

Every λ-term has a Böhm tree, however, not every set of EBT's comes from a
λ-term. For instance, B = {λx.x} is not the Böhm tree image of any λ-term, as
well as the ideal B = {Ω, (x1) Ω, (x1) (x2) Ω, (x1) (x2) (x3) Ω, . . . }.

In this section, we give three conditions that characterize exactly the Böhm tree
image subset of EBT.

Let B be a subset of EBT's.

The �rst condition for B to come from a λ-term is to be a v-ideal (see de�nition
3.15). The set {λx.x} is not coming from a λ-term, since it is not v-closed.

The second condition for B is to have a �nite number of free variables (see
de�nition 3.21). The ideal B = {Ω, (x1) Ω, (x1) (x2) Ω, (x1) (x2) (x3) Ω, . . . } is
for instance not coming from a λ-term, and indeed FV (B) is in�nite.

The third condition for B is to be recursively enumerable (see de�nition 3.34).
To give an intuition, we can construct an ideal B based on the Halting problem,
and this ideal B is not recursively enumerable. For every n ∈ N, we want bn ∈ B,
where

bn = λxy.(u0) . . . (un)Ω =

{
λxy.(u0)(u1) . . . (un−1)(x)Ω if program n halts on input n

λxy.(u0)(u1) . . . (un−1)(y)Ω otherwise

There is no M ∈ Λ such that BT (M) = B, because BT (M) is recursively
enumerable, since it is de�ned by an e�ective procedure (see lemma 3.36), while
B is not, deciding the Halting problem.

3.2.1 Ideal

An ideal is a set B of EBT's, such that B veri�es a number of properties for the
order v:

De�nition 3.15. [Ideal] An ideal B ⊆ EBT is a set of elementary Böhm trees
such that the following conditions hold:

13

• Ω ∈ B;

• if b v c ∈ B then b ∈ B;

• if b, b′ ∈ B, there exists c ∈ B such that b, b′ v c.

Example 3.16. The singleton {Ω} is an ideal. It is the minimum ideal with
respect to the set theoretical inclusion on the ideals of EBT's.

Example 3.17. Let (xn)x∈N be an enumeration of distinct variables. Then
{Ω, (x1) Ω, (x1) (x2) Ω, (x1) (x2) (x3) Ω, . . . } is an ideal.

Every λ-term is associated to a Böhm tree. In particular, this Böhm tree is an
ideal of EBT's.

Lemma 3.18. For all M ∈ Λ, BT (M) is an ideal of EBT's.

Proof. Let M ∈ Λ. We now check that BT (M) veri�es the properties of a
v-ideal:

• Ω = BT0(M) ∈ BT (M).

• Let c ∈ BT (M), let b ∈ EBT , b v c. There exists n ∈ N such that
c v BTn(M), and consequently b v BTn(M). As BT (M) is the v-
downwards closure of {BTn(M), n ∈ N}, we have b ∈ BT (M).

• Let b, b′ ∈ BT (M). There exists n1, n2 ∈ N such that b v BTn1(M) and
b′ v BTn2(M). Then b, b′ v BTmax{n1,n2}(M) ∈ BT (M).

3.2.2 A �nite set of free variables

We now describe the set of free variables of an EBT:

De�nition 3.19. Let b ∈ EBT . The set FV (b) of free variables of b is:

• ∅ if b = Ω;

•

(
{y} ∪

k−1⋃
i=0

FV (bi)

)
\ {x0, . . . , xn−1} if b = λx0 . . . xn−1.(y)b0 . . . bk−1.

Example 3.20. We have FV (((x0) λy.(x0)y) x0) = {x0}.

We extend this de�nition to a set of EBT's:

De�nition 3.21. Let B ⊆ EBT . Then FV (B) =
⋃
a∈B

FV (a).

14

Example 3.22. Let M = ((x0) λy.(x0)y) x0. We have:

FV (BT (((x0) λy.(x0)y) x0)) =
⋃

a∈BT (M)

FV (a) = {x0}

Remark 3.23. It is easy to observe that if B1 ⊆ B2, then FV (B1) ⊆ FV (B2).

As an immediate consequence, FV (BT (M)) =
⋃
n∈N

FV (BTn(M)).

Lemma 3.24. For allM ∈ Λ, we have FV (BT (M)) ⊆ FV (M). It follows that
FV (BT (M)) is �nite.

Proof. We only have to show that forM ∈ Λ and n ∈ N, we have FV (BTn(M)) ⊆
FV (M). Let M ∈ Λ.

If n = 0, we have FV (BT0(M)) = FV (Ω) = ∅ ⊆ FV (M).

If n = m+ 1, there are two cases:

• M = λx0 . . . xp−1(y)M0 . . .Ml−1, FV (M) = ({y}∪
l−1⋃
i=0

FV (Mi))\{x0, . . . , xp−1},

and FV (BTm+1(M)) = ({y} ∪
l−1⋃
i=0

FV (BTm(Mi)))\{x0, . . . , xp−1} Then

by induction hypothesis,

FV (BTm+1(M)) ⊆ ({y} ∪
l−1⋃
i=0

FV (Mi))\{x0, . . . , xp−1} = FV (M)

• M = λx0 . . . xp−1.((λy.Q)R)M0 . . .Ml−1
We have M −→β λx0 . . . xp−1.(Q{R/y})M0 . . .Ml−1. Remember that
Böhm trees are invariant by β-reduction (claim 3.13) and by de�nition,
FV (BTm+1(M)) = FV (BTm(λx0 . . . xp−1.(Q{R/y})M0 . . .Ml−1)). Then
by induction hypothesis,

FV (BTm+1(M)) ⊆ FV (λx0 . . . xp−1.(Q{R/y})M0 . . .Ml−1) ⊆ FV (M)

Remark 3.25. The converse is false. We have FV (BT (((λx.(x)x)λx.(x)x)x)) =
∅ 6= FV (((λx.(x)x)λx.(x)x) x) = {x}.

3.2.3 Recursive enumerability

Now we want to characterize what is an �e�ective Böhm tree�. In order to do
that, we use the notion of a recursively enumerable subset of N. So we encode

15

Λ into N by a Gödel number mapping # that is any e�ective bijection between
Λ�=α and N. One way of de�ning # is by using the De Bruijn notation, which
gives a system of canonical representatives for =α. We will omit such details,
so we �x once and for all a recursive Gödel numbering # : Λ −→ N.
Remark 3.26. The Gödel number are applied to EBT's with the convention
that #Ω = #(λx.(x)x) λx.(x)x.

Remark 3.27. The inverse function of a recursive injection is a partial recursive
function. In particular, #−1 is an e�ective bijection from N to Λ.

We recall a standard encoding of integers in λ-calculus.

De�nition 3.28. [Church Numeral] Let n ∈ N. Then, we set n = λfx.(f)nx.

We also de�ne the Gödel numbering representing M ∈ Λ, dMe:

De�nition 3.29. [Gödel Number] Let M ∈ Λ. Then, we set dMe = #M ,
where #M is the Gödel number of M .

De�nition 3.30. We denote the set of �nite sequences of N by (N)∗, where ε
is the empty sequence, < i > is the sequence having only one element, i ∈ N,
and σ · σ′ is the concatenation of σ and σ′.

Let #′ be an e�ective injection from (N)∗ to N.

De�nition 3.31. For every σ ∈ (N)∗, dσe = #′σ.

Remark 3.32. There is little danger of confusion between dMe and dσe, since
the �rst is de�ned on Λ while the second is de�ned on (N)∗.

We now de�ne recursive enumerability for Böhm Trees:

De�nition 3.33. Let B ⊆ EBT . We de�ne #B = {#a | a ∈ B} ⊆ N.

De�nition 3.34. Let B ⊆ EBT . Then B is R.E. if and only if #B is R.E.,
i.e. either B = ∅, or there exists a recursive function φ : N −→ N such that
#B = {φ(n) | n ∈ N}.

Remark 3.35. The notion of a recursively enumerable subset of EBT's does
not depend on the chosen Gödel enumeration.

We remark that all examples in the previous section of B = BT (M) satisfy the
three conditions : B is a v-ideal, FV (B) is �nite, and B is R.E.

Lemma 3.36. Let M ∈ Λ. Then BT (M) is R.E.

Proof. Notice that BT (M) is de�ned by an e�ective procedure, hence we con-
clude by Church's thesis.

16

3.3 The characterization theorem

We now want to characterize the subsets of EBT's coming from λ-terms. Until
now we have shown that if B = BT (M) for a certain M ∈ Λ, then B is an ideal,
R.E., and with a �nite number of free variables. We now prove the converse. For
doing so, we need some preliminary de�nitions and lemmas, as well as recalling
two �xed-point theorems for the λ-calculus.

De�nition 3.37. Let B be a set of EBT's. For i ≥ 0, we write Bi the projection
of B on the ith son.

Bi = {e ∈ EBT | ∃λx0 . . . xn−1.(y)f0 . . . fi−1efi+1 . . . fk−1 ∈ B ∧ n ≥ 0 ∧ k > i}

Lemma 3.38. Let B be a set of EBT's. If B is R.E., then so is Bi for every i.

Proof. Just remark that the procedure computing Bi is e�ective.

Lemma 3.39. Let B be a v-ideal and λx0 . . . xn−1.(y)b0 . . . bk−1 ∈ B. Then, if
FV (B) is �nite, FV (Bi) is �nite. Moreover, for every i < k, Bi is a v-ideal.

Proof. We assume that B is a v-ideal, and that FV (B) is �nite. We re-
mark that if B = ∅ then there is nothing to prove. Otherwise, there exists
b = λx0 . . . xn−1.(y)e0 . . . ek−1 ∈ B. Let i ∈ N, and k > i. Then for all
x ∈ FV (Bi), there exists e ∈ Bi such that x ∈ FV (e), so that FV (Bi) ⊆
FV (e) ∪ {x0, . . . , xn−1}, which is �nite. Finally, we show that Bi is a v-ideal.

• It is clear that Ω ∈ Bi, because B is a v-ideal.

• Let e1 ∈ EBT, e2 ∈ Bi, s.t. e1 v e2. If e2 = Ω, there is nothing to prove.
Otherwise, there exists e′2 = λx0 . . . xn−1.(y)f0 . . . fi−1e2fi+1 . . . fk−1 ∈ B,
and e′1 = λx0 . . . xn−1.(y)f0 . . . fi−1e1fi+1 . . . fk−1 v e′2. As B is a v-ideal,
e′1 ∈ B and subsequently, e1 ∈ Bi.

• Let e1, e2 ∈ Bi. There exists e′1 = λx0 . . . xn−1.(y)f0 . . . fi−1e1fi+1 . . . fk−1 ∈
B, and e′2 = λx0 . . . xn−1.(y)g0 . . . gi−1e2gi+1 . . . gk−1 ∈ B. As B is a v-
ideal, there exists λx0 . . . xn−1.(y)l0 . . . li−1lili+1 . . . lk−1 w e′1, e′2, and sub-
sequently, li w e1, e2. Finally, li ∈ Bi and li w e1, e2.

We extend the de�nition of Bi to any sequence of integers:

De�nition 3.40. Let σ ∈ (N)∗. Let B be a subset of EBT's. Then:

B(σ) =

{
B, if σ = ε

B(σ′)i, if σ = σ′· < i >

17

The following lemma is crucial for our theorem.

Lemma 3.41. [Uniformity] Let B be a v-ideal. If there exists b1, b2 such that
b1 = λx0 . . . xn−1.(y)e0 . . . ek−1 and b2 = λy0 . . . ym−1.(z)f0 . . . fk′−1 then y = z,
k = k′ and n = m.

Proof. Let b1, b2 ∈ B, such that b1 = λx0 . . . xn−1.(y)e0 . . . ek−1, and b2 =
λy0 . . . ym−1.(z)f0 . . . fk′−1. As B is a v-ideal, there exists b ∈ B such that
b w b1, b2. By de�nition of v, b = λx0 . . . xn−1.(y)g0 . . . gk−1 w b1, and
λy0 . . . ym−1.(z)h0 . . . hk′−1 w b2. Subsequently n = m, y = z, and k = k′.

By lemmas 3.39 and 3.41, a v-ideal describes a tree labelled by λx0 . . . xn−1.(y)
and branching on the arguments of y. Recalling the example 3.12, we can
represent the tree associated with BT (λx0. ((x0) λy.(x0)y) x0) as:

λx0. x0

λy.x0 x0

y

The reader can �nd a such a tree representation in the chapter 10 of [Bar], where
Böhm trees are presented as trees.

Let B be a v-ideal. We now explicit the subtree of a node at address σ:

De�nition 3.42. Let B be a v-ideal. The arity of a node σ, %B(σ), is de�ned
by: %B(σ) = k if ∃λx0 . . . xn−1.(g)h0 . . . hk−1 ∈ B(σ). If B(σ) = {Ω}, then
%B(σ) is unde�ned.

Remark 3.43. For B ⊆ EBT the function %B must be well-de�ned, which means
that for σ ∈ (N)∗, if λx0 . . . xn−1.(g)h0 . . . hk−1, λy0 . . . yn−1.(h)l0 . . . lm−1 ∈
B(σ) then k = m. This is the case when B is a v-ideal (see lemma 3.41).

We describe the label at node β of a v-ideal:

De�nition 3.44. Let B be a v-ideal.

B{β} =

λx0 . . . xn−1.(y), if β = ε and λx0 . . . xn−1.(y)b0 . . . bk−1 ∈ B
Bi{β′}, if β = 〈i〉 · β′ and i < %B(ε)

↑ elsewhere

Notice that B{β} is de�ned if and only if B(β) is di�erent from ∅ and {Ω}. We
then de�ne the vector of free variables at a node σ:

18

De�nition 3.45. Given a v-ideal B, and a list `B of the free variables of B, if
B(σ) 6= ∅ we de�ne FV `B(σ) as follows:

FV `BB (σ) =

`B If σ = ε

Where λx0, . . . , xk−1.(y)b0 . . . bl−1 ∈ B
FV

`B·<x0,...,xk−1>
Bi

(σ′) and σ = σ′· < i >

Notice that we are using Lemma 3.39 and 3.41, inferring that Bi is an ideal
whenever B is, and that the pre�x λx0 . . . xn−1.(y) is the same for all elements
of B di�erent from Ω.

Lemma 3.46. Given B,B′ v-ideals, if ∀β ∈ (N)∗,B{β} = B′{β}, then B = B′.

Proof. We show that for all β ∈ (N)∗, for B,B′ v-ideals such that B{β} = B′{β},
we have that B ⊆ B′ (the other inclusion being symmetrical). The proof is by in-
duction on the length of β. Let b ∈ B, we have to show that b ∈ B′. If b = Ω, b ∈
B′. Otherwise, b = λx0 . . . xn−1.(y)b0 . . . bk−1. Therefore, as ∀β,B{β} = B′{β},
then B′ 6= {Ω}. In particular, B′{ε} = B{ε} = λx0 . . . xn−1.(y) consequently
there exists b′ = λx0 . . . xn−1.(y)b′0 . . . b

′
k′−1 ∈ B′. Furthermore, k = k′. If we

suppose for instance k < k′, then we are in contradiction with the hypothesis,
since B′{< k′ >} is de�ned but not B{< k′ >} while B′{< k′ >} = B{< k′ >}.

Let i ∈ {0, . . . , k − 1} and c = λx0 . . . xn−1.(y)b′0 . . . b
′
i−1bib

′
i+1 . . . b

′
k−1; we now

prove that c ∈ B′.

By induction, if β =< i > ·β′, then Bi{β′} = B{< i > ·β′} = B′{< i > ·β′} =
B′i{β′}, and bi ∈ B′i. Therefore, there exists

d = λx0 . . . xn−1.(y)d0 . . . di−1bidi+1 . . . dk−1 ∈ B′

Let m ∈ B′ such that b′, d v m, m = λx0 . . . xn−1.(y)m0 . . .mi . . .mk−1 . Then
b′0 v m0, . . . , b

′
i−1 v mi−1, bi v mi, b

′
i+1 v mi+1, . . . , b

′
k−1 v mk−1, and conse-

quently c = λx0 . . . xn−1.(y)b′0 . . . b
′
i−1bib

′
i+1 . . . b

′
k−1 ∈ B′.

By applying this procedure for every i ∈ {0, . . . , k − 1}, we thus obtain that
b = λx0 . . . xn−1.(y)b0 . . . bk−1 ∈ B′, which concludes the proof.

For the proof of the characterization theorem, we need two �xed point theorems,
from [Bar]. Recall that Λ0 denotes the set of closed λ-terms.

Theorem 3.47. There exists E ∈ Λ0 such that for all M ∈ Λ0, E dMe � M .
Furthermore, if M is unsolvable, then E dMe is unsolvable.

Theorem 3.48. For all G ∈ Λ0, there exists M ∈ Λ0 such that M � G dMe.

Thus we obtain our characterization theorem:

19

Theorem 3.49. For all B ⊆ EBT , there exists M ∈ Λ such that BT (M) = B
if and only if B is a v-ideal, FV (B) is �nite, and B is R.E.

The left-to-right implication is a trivial consequence of the lemmas 3.18, 3.24,
and 3.36. We now show the right-to-left implication.

By theorem 3.47, we have E ∈ Λ0 so that for all M ∈ Λ0, E dMe�M , and we
will use this E.

Let B be a v-ideal, such that FV (B) is �nite, and B is R.E.

If σ ∈ (N)∗ and B(σ) 6= ∅ , or {Ω}, then B(σ) and %B(σ) are de�ned: let
B{σ} = λx0 . . . xn−1.(y), we set:

Cσ =λmλFV `BB (σ)λx0 . . . xn−1.(y)

(Em dσ· < 0 >eFV `BB (σ· < 0 >) . . . (Em dσ· < %B(σ)− 1 >e
FV `BB (σ· < %B(σ)− 1 >)

We remark that Cσ ∈ Λ0. Furthermore, as B is R.E., by remark 3.27, there is
an e�ective procedure that computes Cσ.

Let Ψ be a partial recursive function Ψ(σ) =

{
#Cσ, if B(σ) 6= ∅ and 6= {Ω}
↑ elsewhere

The function F λ-de�nes Ψ: F dσe =

{
dΨ(σ)e = dCσe if B(σ) 6= ∅ and 6= {Ω}
↑ elsewhere

We now construct the λ-termN such thatBT (N) = B. Let F ′ = λmλs.((E)(F)s)m.
By theorem 3.48, there existsM ∈ Λ0, such thatM � F ′ dMe → λs.((E)(F)s) dMe.

If Ψ(σ) ↓, i.e. if B(σ) 6= ∅ and 6= {Ω} :

M dσeFV `BB (σ) � E(F dσe) dMeFV `BB (σ) by de�nition of F

� E(dCσe) dMeFV `BB (σ)

� Cσ dMeFV `BB (σ) by de�nition of E

� λx0 . . . xn−1.(y)(E dMe dσ· < 0 >eFV `BB (σ· < 0 >) . . .

(E dMe dσ· < %B(σ)− 1 >eFV `BB (σ· < %B(σ)− 1 >)

� λx0 . . . xn−1.(y)(M dσ· < 0 >eFV `BB (σ· < 0 >) . . . by de�nition of E

If B(σ) ↑ (i.e. B(σ) = ∅ or = {Ω}) , then M dσeFV `BB (σ) is unsolvable.

The following claim results from the de�nition of the label at node β:

Claim 3.50. For all σ, β ∈ (N)∗, we have BT (M dσeFV `BB (σ)){β} = B(σ){β}.

20

Proof. We show this claim by induction on β. If β = ε we already have the
equality, BT (M dσeFV `BB (σ)){ε} = λx0 . . . xn−1.(y) = B(σ){ε}. If β =< i >
·β′,

BT (M dσeFV `BB (σ)){< i > ·β′} = BT (M dσ· < i >eFV `BB (σ· < i >)){β′}
= B(σ· < i >){β′} = B(σ){< i > ·β′}

The result follows: for all β ∈ (N)∗, B{β} = B(ε){β} = BT (M dεeFV `BB (ε)){β}.
Therefore, by lemma 3.46, we have B = BT (M dεeFV `BB (ε)), concluding the
proof of the theorem.

4 Coherent spaces resulting from resource terms

4.1 Taylor Expansion

4.1.1 Introduction to resource λ-calculus

First, we introduce the resource λ-calculus (∆(!) for short), which is a resource
sensitive variant of the λ-calculus.

De�nition 4.1. We de�ne the set ∆ of simple terms, and the set ∆! of simple

poly-terms by mutual recursion:

• ∆ = s, t ::= x | λx.s | s[t1, . . . , tk] where x is a variable

• ∆! = S, T ::= 1 | [s] | TS = [t1, . . . , tk][s1, . . . , sl] = [t1, . . . , tk, s1, . . . , sl]

In fact, ∆! is the set of �nite multisets of simple terms, in which we use the multi-
plication operator, representing disjoint union, 1 represents the empty multiset.
Finally, ∆(!) = ∆ t∆!.

Example 4.2. An example of simple term is λx.x[y, y, z] = λx.x[y2, z], and
[s, s, t, s] = [s3, t] is a simple poly-term.

Remark 4.3. We extend in a trivial way the notions of free and bound variables
coming from the λ-calculus.

4.1.2 Linear combinations and reduction

We now work on the free module {0, 1}[∆] over the commutative semi-ring
({0, 1},max,min, 0, 1), generated by ∆. In [EhrReg2], the calculus is studied
for any commutative semi-ring; here we restrict our study to the case of the
semi-ring {0, 1}, so the free module generated by ∆ is simply the powerset of ∆
with the union as addition, and 0 as the empty set ∅.

21

We de�ne a reduction in the resource calculus, similar to the reduction of λ-
terms.

De�nition 4.4. A redex is a simple term of the shape r = (λx.s) [s1, . . . , sk].

De�nition 4.5. [Resource Reduction] The single-step reduction in the resource
calculus, denoted by −→r⊆ ∆(!)×{0, 1}[∆], is the smallest relation that satis�es
the following rules:

t −→r α

λx.t −→r λx.α = {λx.s | s ∈ α}
t −→r α

tT −→r αT = {sT | s ∈ α}

t −→r α

[t] −→r {[s]; s ∈ α}
T −→r Π

(S)T −→r SΠ = {ST ′ | T ′ ∈ Π}
Finally, if r = λx.s [s1, . . . , sk] and k is distinct from the number of free occur-
rences of x in s, then r −→r ∅, r reduces to the empty set. Otherwise, r reduces
to {s� s1/xf(1), . . . , sk/xf(k) �| f ∈ σk} ∈ {0, 1}[∆] where x1, . . . , xk are the
free occurrences of x in s, and where σk stands for the group of all permutations
on the set {1, . . . , k}.

We also want −→r to satisfy the following rules:

t −→r α

{t} ∪ β −→r α ∪ β
T −→r Π

{T} ∪ ρ −→r Π ∪ ρ

The re�exive transitive closure is denoted by the same convention as in λ-
calculus: �r⊆ {0, 1}[∆(!)]×{0, 1}[∆(!)]. Constructions of this syntax are linear.

Example 4.6. We give a few examples in order to understand the −→r- re-
duction:
The simple resource term (λx.x[x])1 reduces to the emptyset ∅.
(λx.x[x])[y] −→r ∅.
(λx.x[x])[y3] −→r ∅.
(λx.x[x])[y, z] −→r {y[z], z[y]}.
(λx.x[x])[y, y] −→r {y[y]}.
Notice that we are not counting the number of times we have y[y], as we are in
{0, 1}[∆].

Example 4.7. We have that (λx.x[x])[λx.x[x]] −→r ∅, and (λx.x[x2])[(λx.x[x])3] −→r

{(λx.x[x]) [λx.x[x], λx.x[x]]} which reduces to ∅.
Example 4.8. Let r = (λfx.f [f [x], f [x]])[λgy.g[g[y]], λz.z, λz.z]. Then r re-
duces to {λx.(λgy.g[g[y]])[(λz.z)[x], (λz.z)[x]]}. Finally, r reduces to {λx.λy.x[x[y]]}.

We denote by ∆n (resp. ∆0) the set of all normal simple terms (resp. of all
closed simple terms).

Theorem 4.9. [EhrReg2] The resource reduction relation is con�uent, and
strongly normalizing.

22

To prove that the reduction relation is strongly normalizing, remark that if
t −→r si, then the number of symbols of its si is strictly less than the number
of symbols in t. Then, con�uence follows by Newman's lemma.

For every ρ ∈ {0, 1}[∆(!)] we de�ne NF (ρ):

De�nition 4.10. Let ρ ∈ {0, 1}[∆(!)]. The function NF : {0, 1}[∆(!)] −→
{0, 1}[∆(!)

n] associates ρ to its normal form.

De�nition 4.11. Let r be a simple term. Then r is an elementary resource

term (ERT) if r is in normal form.

4.1.3 Taylor Expansion

We now describe the Taylor expansion of a λ-term, where the term is expressed
as a possibly in�nite set of simple terms.

De�nition 4.12. Let M ∈ Λ. The Taylor expansion of M , τ(M). τ : Λ −→
P(∆) is:

• If M = x, then τ(M) = {x};

• If M = λx.N , then τ(M) = {λx.s | s ∈ τ(N)};

• If M = (P)Q, then τ(M) = {pQ = p[q1, . . . , qk] | p ∈ τ(P); k ∈ N;
q1, . . . , qk ∈ τ(Q)}.

Example 4.13. The Taylor expansion of λx.(x)y is {λx.x[yn] | n ∈ N}.
Example 4.14. The Taylor expansion of 2 = λfx.(f)(f)x is

{λfx.f [f [xn1], . . . , f [xnk]] | k ∈ N;n1, . . . , nk ∈ N}

We extend τ from P(EBT) to P(∆): τ(B) =
⋃
b∈B

τ(b), and, as a convention,

τ(Ω) = ∅. We �nally recall the main theorem from [EhrReg2], which makes a
link between Böhm trees and Taylor expansion:

Theorem 4.15. [Ehrhard Régnier] LetM ∈ Λ, then τ(BT (M)) = NF (τ(M)).

In order to illustrate this crucial theorem, we give examples:

Example 4.16. Consider the λ-termM = (λx.(x)x)λx.(x)x. Then τ(BT (M)) =
τ(Ω) = ∅. We have τ(M) = {λx.x[xn][λx.x[xn1], . . . , λx.x[xnk]] | n, k, n1, . . . , nk ∈
N}. It can be proved by induction on n, k, n1, . . . , nk, that τ(M) reduces to ∅.
Therefore, NF (τ(M)) = NF (∅) = ∅.
Example 4.17. On the one hand, we have

τ(BT (λfx. (f)(f)(λy.y)x)) = τ(BT (2)) = τ({Ω, λfx. (f)Ω, λfx. (f)(f)x})
= {λfx.f [f [xn1], . . . , f [xnk]] | k ∈ N;n1, . . . , nk ∈ N}

23

On the other hand, we have NF (τ(λfx. (f)(f)(λy.y)x))
= NF ({λfx.f [f [((λy.y)x)n1], . . . , f [((λy.y)x)nk]]] | k ∈ N;n1, . . . , nk ∈ N})
= {λfx.f [f [xn1], . . . , f [xnk]] | k ∈ N;n1, . . . , nk ∈ N}
= τ(BT (λfx. (f)(f)(λy.y)x))

4.2 Towards the characterization theorem for resource cal-

culus

Recall that we can see λ-terms as computer programs, where the Böhm tree of a
term/program describes the interaction between the program and the external
environment, and where Taylor expansion is a quantitative re�nement of Böhm
trees. To every λ-term M , we can associate its Taylor expansion τ(M), and we
would like to characterize the sets of simple terms that come from the Taylor
expansion of a λ-term.

We easily adapt the de�nition of free variables to resource calculus, as well as
the notion of recursive enumerability.

We now de�ne the binary coherence relation (see [EhrReg1] section 3):

De�nition 4.18. The coherence relation on resource terms, denoted by �, is
de�ned by induction on simple terms:

• x � t′ if t′ = x,

• λx.s � t′ if t′ = λx.s′, with s � s′,

• sT � t′ if t′ = s′T ′ with s � s′ and T � T ′,

• [s1, . . . , sn] � [sn+1, . . . , sm] if for all i, j ∈ {1, . . . ,m}, si � sj .

When two terms are not coherent, we say that they are incoherent. Incoherence
is denoted by the symbol �.
Remark 4.19. Coherence is not an equivalence relation. It is not transitive,
since if y 6= z then x[y] � x1 and x1 � x[z], but x[y] � x[z]. It is not re�exive,
since if x � y then [x, y] � [x, y].

De�nition 4.20. A term σ ∈ ∆(!) is uniform if σ � σ.

De�nition 4.21. We call clique a subset of resource terms U such that, for
every τ, τ ′ ∈ U , τ � τ ′.

Theorem 4.22. For every M ∈ Λ, τ(M) is a maximal clique in (∆, �).

Proof. We prove the theorem by induction on M :

• If M = x, then τ(M) is a clique. It is maximal, as any element di�erent
from x cannot be coherent with x.

24

• If M = λx.N , then τ(M) = {λx.s | s ∈ τ(N)}. As τ(N) is a clique,
by induction hypothesis, τ(M) is a clique. Let U be a maximal clique
that includes τ(M). Then, for any r ∈ U , r = λx.s, where s � s′ for
any s′ ∈ τ(N). As τ(N) is a maximal clique, by induction hypothesis,
s′ ∈ τ(N), therefore r ∈ τ(M).

• If M = (P)Q, then τ(M) = {p[q1, . . . , qk] | p ∈ τ(P); k ∈ N; q1, . . . , qk ∈
τ(Q)}. By induction hypothesis on τ(P) and τ(Q), we deduce that τ(M)
is a maximal clique.

We obtain three necessary conditions for a subset U of ∆ to be the Taylor
expansion of a λ-term:

• U has a �nite number of free variables,

• U is a clique,

• U is recursively enumerable.

For instance, the set {x, y} is not a clique, and does not come from a λ-term.
The set {x11, x1[x21], . . . } is a clique, recursively enumerable, but has an in�nite
number of free variables, and does not come from a λ-term. Finally, we de�ne
the sequence:

rn = λxy.u0[. . . [un1] . . .] =

{
λxy.u0[u1[. . . [un−1[x1] . . .] if program n halts on input n

λxy.u0[u1[. . . [un−1[y1] . . .] otherwise

The set {rn | n ∈ N} has a �nite number of free variables, is a clique, but
not recursively enumerable, and does not come from a λ-term, as the Taylor
expansion is an e�ective procedure.

We have shown by examples that these three conditions are necessary for a
subset U of ∆ to be the imageset of the normal form of a Taylor expansion of
a λ-term. The next step is to show that these conditions are su�cient.

Conclusions

This work suggests a number of interesting directions to explore in further de-
velopments. The role of the scalar coe�cients in formal series of resource terms
deserves a deep investigation, to uncover a possible connection between the
scalar value and the time and space complexity. Another direction is to study
formal series of resource terms not coming from a λ-term, where there is a su-
perposition of inconsistent information. Take the example of a program that
tests twice a boolean variable b, and returns true if the two values are the same
and false if the two values are di�erent. In a pure functional programming lan-
guage, the value of a variable cannot be changed once set, so this example would

25

always return true. In a nondeterministic setting, the value of b might change
between the two tests, making necessary to model inconsistent information.

References

[Bar] Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics.
North-Holland, Revised edition, 1985.

[EhrReg1] Thomas Ehrhard and Laurent Regnier. Uniformity and the Taylor
expansion of ordinary lambda-terms. Theoretical Computer Science, 2006.

[EhrReg2] Thomas Ehrhard and Laurent Regnier. Böhm trees, Krivine machine
and the Taylor expansion of ordinary lambda-terms. Computability in Europe,
2006.

[Ehr] Thomas Ehrhard. Notes de cours de Master LMFI et MPRI. http:

//www.pps.univ-paris-diderot.fr/~ehrhard/cours-MPRI-LMFI.pdf

[Sel] Peter Selinger. Lecture Notes on the Lambda Calculus. http://www.

mathstat.dal.ca/~selinger/papers/lambdanotes.pdf

[Plot] Gordon D. Plotkin. LCF considered as a programming language. Theo-
retical Computer Science 5: 223�255, 1977.

[EhrReg3] Thomas Ehrhard and Laurent Regnier.. The di�erential lambda-
calculus. Theoretical Computer Science 309, 1-3, 2003.

[Rey] John C. Reynolds. Idealized ALGOL and its speci�cation logic. ALGOL-
like Languages, Volume 1, pages 125 - 156 , 1997.

[PagTas] Michele Pagani and Christine Tasson. The Inverse Taylor Expansion
Problem in Linear Logic. LICS 2009: 222-231 , 2009.

[PagMan] Michele Pagani and Giulio Manzonetto. Böhm's theorem for resource
lambda calculus through Taylor expansion. TLCA'11 Proceedings of the 10th

international conference on Typed lambda calculi and applications, pages 153-

168 , 2011.

[Guha] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. The essence
of javascript. ECOOP'10 Proceedings of the 24th European conference on

Object-oriented programming, pages 126-150 , 2010.

26

http://www.pps.univ-paris-diderot.fr/~ehrhard/cours-MPRI-LMFI.pdf
http://www.pps.univ-paris-diderot.fr/~ehrhard/cours-MPRI-LMFI.pdf
http://www.mathstat.dal.ca/~selinger/papers/lambdanotes.pdf
http://www.mathstat.dal.ca/~selinger/papers/lambdanotes.pdf

	Introduction
	Introduction to the -calculus
	Syntax
	Free and bound variables, -equivalence
	Substitution
	-reduction, -normal form
	Solvability, head normal form

	Böhm Trees resulting from -terms
	Recall on Böhm trees
	Towards the characterization theorem
	Ideal
	A finite set of free variables
	Recursive enumerability

	The characterization theorem

	Coherent spaces resulting from resource terms
	Taylor Expansion
	Introduction to resource -calculus
	Linear combinations and reduction
	Taylor Expansion

	Towards the characterization theorem for resource calculus

