
Towards an atomic λµ-calculus
YR-ICALP 2015

Fanny He
f.he@bath.ac.uk

5 July 2015

f.he@bath.ac.uk

Sharing, laziness and atomicity

The λµ-calculus: classical logic and continuations

An atomic ΛµS-calculus

Sharing subexpressions

fibonacci n | (n == 0) = 0
| (n == 1) = 1
| (n > 1) = fibonacci (n-1) + fibonacci (n-2)

fibonacci2 n = fib 1 0 n
where
fib n1 n2 n | (n == 0) = n2

| (n == 1) = n1
| (n > 1) = fib (n1+n2) n1 (n-1)

Sharing subexpressions

Exponential:

fibonacci n | (n == 0) = 0
| (n == 1) = 1
| (n > 1) = fibonacci (n-1) + fibonacci (n-2)

n

(n − 1) (n − 2)

(n − 2) (n − 3) (n − 3) (n − 4)

Sharing subexpressions

Linear:

fibonacci2 n = fib 1 0 n
where
fib n1 n2 n | (n == 0) = n2

| (n == 1) = n1
| (n > 1) = fib (n1+n2) n1 (n-1)

n n1 n2

(n − 1) n1 n2

(n − 2) n1 n2

Lazy evaluation

fib = 0:1:zipWith (+) fib (tail fib)
fibo n = fib !! n

fib= [0, 1, 1, . . .]
tail fib = [1, 1, 2, . . .]
0:1:zipWith (+) fib (tail fib)
= [0, 1, 0 + 1, 1 + 1, 1 + 2, . . .]
= [0, 1, 1, 2, 3, . . .]

A λ-calculus with atomicity

The λ-calculus
[Church]

Λ : t, u ::= x | λx .t | (t)u

(λx .t)(λy .u)→β t{(λy .u)/x}

The atomic λ-calculus
[Gundersen, Heijltjes, Parigot]

Λa : t, u ::= x | λx .t | (t)u | u[c]

[c] ::= [x1, . . . , xp ← t] |

[~xp � λy .〈~tp〉[c1] . . . [cr]]

Independent duplication of λy
and u
Naturally retrieves sharing and
laziness

Extend these properties to other calculi?

Continuations: the sandwich approach

1. In front of the refrigerator, thinking about a sandwich,
2. Stick a continuation in your pocket,
3. Use ingredients and make a sandwich (sitting on the counter),
4. Invoke the continuation in your pocket,
5. Back to 1, but there is a sandwich on the counter, and all

ingredients are gone: eat the sandwich.

Continuations: the sandwich approach
1. In front of the refrigerator, thinking about a sandwich,
2. Stick a continuation in your pocket,
3. Use ingredients and make a sandwich (sitting on the counter),
4. Invoke the continuation in your pocket,
5. Back to 1, but there is a sandwich on the counter, and all

ingredients are gone: eat the sandwich.

Continuations: the sandwich approach
1. In front of the refrigerator, thinking about a sandwich,
2. Stick a continuation in your pocket,
3. Use ingredients and make a sandwich (sitting on the counter),
4. Invoke the continuation in your pocket,
5. Back to 1, but there is a sandwich on the counter, and all

ingredients are gone: eat the sandwich.

Continuations: the sandwich approach
1. In front of the refrigerator, thinking about a sandwich,
2. Stick a continuation in your pocket,
3. Use ingredients and make a sandwich (sitting on the counter),
4. Invoke the continuation in your pocket,
5. Back to 1, but there is a sandwich on the counter, and all

ingredients are gone: eat the sandwich.

Continuations: the sandwich approach
1. In front of the refrigerator, thinking about a sandwich,
2. Stick a continuation in your pocket,
3. Use ingredients and make a sandwich (sitting on the counter),
4. Invoke the continuation in your pocket,
5. Back to 1, but there is a sandwich on the counter, and all

ingredients are gone: eat the sandwich.

Continuations: the sandwich approach
1. In front of the refrigerator, thinking about a sandwich,
2. Stick a continuation in your pocket,
3. Use ingredients and make a sandwich (sitting on the counter),
4. Invoke the continuation in your pocket,
5. Back to 1, but there is a sandwich on the counter, and all

ingredients are gone: eat the sandwich.

λµ-calculi [Parigot, Saurin]

λ ∼=CH Intuitionistic Logic
λµ ∼=CH Classical Logic (A ∨ ¬A)
Classical operators ↔ Continuations [Griffin]

The ΛµS-calculus:

Streams S ,T ::= α | t ◦ S
Terms t, u ::= x | λx .t | (t)u | (t)S | µα.t

(µα.t)u −→µ µα. t{u ◦ α/α}

Explicit sharings and atomicity in λµ-calculi?

A ΛµS-calculus with explicit sharings

Closures [φ], [ψ] ::= [x1, . . . , xp ← t] | [γ1, . . . , γp ← S]

Streams S ,T ::= α | t ◦ S | S [φ]

Terms t, u ::= x | λx .t | (t)u | (t)S | µα.t | u[φ]

The atomic ΛµS-calculus

Closures [φ], [ψ] ::= [~xq ← t] | [~γq ← S] | [~xq � λy .tq] | [~xq � µβ.tq]

Streams S ,T ::= α | t ◦ S | S [φ]

Terms t, u ::= x | λx .t | (t)u | (t)S | µα.t | u[φ]

λ-tuples tp ::= 〈 t1, . . . , tp 〉 | tp[φ]

Future work

Check the properties of this calculus:
I Termination in a typed setting X
I Type preservation under reduction
I Confluence
I Preserving termination w.r.t. λ

Extend to calculi with more general effects

	Sharing, laziness and atomicity
	The -calculus: classical logic and continuations
	An atomic S-calculus

