Towards an atomic $\lambda \mu$-calculus YR-ICALP 2015

Fanny He
f.he@bath.ac.uk

UNIVERSITY OF
BATH

5 July 2015

Sharing, laziness and atomicity

The $\lambda \mu$-calculus: classical logic and continuations

An atomic $\Lambda \mu S$-calculus

Sharing subexpressions

- fibonacci $\mathrm{n} \mid(\mathrm{n}==0)=0$
| $(\mathrm{n}==1)=1$
| (n > 1) = fibonacci (n-1) + fibonacci (n-2)
- fibonacci2 $\mathrm{n}=\mathrm{fib} 10 \mathrm{n}$ where
fib n1 n2 n | (n == 0) = n2
| $(\mathrm{n}==1)=n 1$
| ($n>1$) $=$ fib ($n 1+n 2$) n1 ($n-1$)

Sharing subexpressions

Exponential:

Sharing subexpressions

Linear:

fibonacci2 $n=$ fib $10 n$
where

$$
\text { fib n1 n2 n | }(\mathrm{n}==0)=\mathrm{n} 2
$$

$$
\mid(n==1)=n 1
$$

$$
\mid(n>1)=\text { fib }(n 1+n 2) n 1(n-1)
$$

Lazy evaluation

```
fib = 0:1:zipWith (+) fib (tail fib)
fibo n = fib !! n
    - fib=[0, 1, 1,\ldots]
- tail fib = [1,1,2,\ldots.]
| 0:1:zipWith (+) fib (tail fib)
    = [0,1,0 + 1,1+1,1+2,\ldots.]
    =[0,1,1,2,3,\ldots]
```


A λ-calculus with atomicity

The λ-calculus
[Church]

$$
\Lambda: \quad t, u::=x|\lambda x . t|(t) u
$$

- $(\lambda x . t)(\lambda y . u) \rightarrow_{\beta} t\{(\lambda y . u) / x\}$

The atomic λ-calculus
[Gundersen, Heijltjes, Parigot]

$$
\begin{aligned}
\Lambda_{a}: t, u & ::=x|\lambda x . t|(t) u \mid u[c] \\
{[c] \quad } & ::=\left[x_{1}, \ldots, x_{p} \leftarrow t\right] \mid \\
& {\left[\overrightarrow{x_{p}} \leftarrow \lambda y \cdot\left\langle\overrightarrow{t_{p}}\right\rangle\left[c_{1}\right] \ldots\left[c_{r}\right]\right] }
\end{aligned}
$$

- Independent duplication of λy and u
- Naturally retrieves sharing and laziness

Extend these properties to other calculi?

Continuations: the sandwich approach

1. In front of the refrigerator, thinking about a sandwich,
2. Stick a continuation in your pocket,
3. Use ingredients and make a sandwich (sitting on the counter),
4. Invoke the continuation in your pocket,
5. Back to 1 , but there is a sandwich on the counter, and all ingredients are gone: eat the sandwich.

Continuations: the sandwich approach

1. In front of the refrigerator, thinking about a sandwich,
2. Stick a continuation in your pocket,
3. Use ingredients and make a sandwich (sitting on the counter),
4. Invoke the continuation in your pocket,
5. Back to 1 , but there is a sandwich on the counter, and all ingredients are gone: eat the sandwich.

Continuations: the sandwich approach

1. In front of the refrigerator, thinking about a sandwich,
2. Stick a continuation in your pocket,
3. Use ingredients and make a sandwich (sitting on the counter),
4. Invoke the continuation in your pocket,
5. Back to 1 , but there is a sandwich on the counter, and all ingredients are gone: eat the sandwich.

Continuations: the sandwich approach

1. In front of the refrigerator, thinking about a sandwich,
2. Stick a continuation in your pocket,
3. Use ingredients and make a sandwich (sitting on the counter),
4. Invoke the continuation in your pocket,
5. Back to 1 , but there is a sandwich on the counter, and all ingredients are gone: eat the sandwich.

Continuations: the sandwich approach

1. In front of the refrigerator, thinking about a sandwich,
2. Stick a continuation in your pocket,
3. Use ingredients and make a sandwich (sitting on the counter),
4. Invoke the continuation in your pocket,
5. Back to 1 , but there is a sandwich on the counter, and all ingredients are gone: eat the sandwich.

Continuations: the sandwich approach

1. In front of the refrigerator, thinking about a sandwich,
2. Stick a continuation in your pocket,
3. Use ingredients and make a sandwich (sitting on the counter),
4. Invoke the continuation in your pocket,
5. Back to 1 , but there is a sandwich on the counter, and all ingredients are gone: eat the sandwich.

$\lambda \mu$-calculi [Parigot, Saurin]

- $\lambda \cong{ }_{C H}$ Intuitionistic Logic
- $\lambda \mu \cong{ }_{C H}$ Classical Logic $(A \vee \neg A)$
- Classical operators \leftrightarrow Continuations [Griffin]

The $\wedge \mu S$-calculus:

$$
\begin{aligned}
& \text { Streams } S, T::=\alpha \mid t \circ S \\
& \text { Terms } t, u::=x|\lambda x . t|(t) u|(t) S| \mu \alpha . t \\
& \qquad(\mu \alpha . t) u \longrightarrow_{\mu} \mu \alpha . t\{u \circ \alpha / \alpha\}
\end{aligned}
$$

Explicit sharings and atomicity in $\lambda \mu$-calculi?

A $\wedge \mu S$-calculus with explicit sharings

$$
\begin{aligned}
& \text { Closures }[\phi],[\psi]::=\left[x_{1}, \ldots, x_{p} \leftarrow t\right] \mid\left[\gamma_{1}, \ldots, \gamma_{p} \leftarrow S\right] \\
& \text { Streams } S, T::=\alpha|t \circ S| S[\phi] \\
& \text { Terms } t, u::=x|\lambda x . t|(t) u|(t) S| \mu \alpha . t \mid u[\phi]
\end{aligned}
$$

The atomic $\Lambda \mu S$-calculus

Closures $[\phi],[\psi]::=\left[\overrightarrow{x_{q}} \leftarrow t\right]\left|\left[\overrightarrow{\gamma_{q}} \leftarrow S\right]\right|\left[\overrightarrow{x_{q}} \leftarrow \lambda y \cdot t^{q}\right] \mid\left[\overrightarrow{x_{q}} \leftarrow \mu \beta . t^{q}\right]$
Streams $S, T::=\alpha|t \circ S| S[\phi]$
Terms $t, u::=x|\lambda x . t|(t) u|(t) S| \mu \alpha . t \mid u[\phi]$
λ-tuples $t^{p}::=\left\langle t_{1}, \ldots, t_{p}\right\rangle \mid t^{p}[\phi]$

Future work

- Check the properties of this calculus:
- Termination in a typed setting \checkmark
- Type preservation under reduction
- Confluence
- Preserving termination w.r.t. λ
- Extend to calculi with more general effects

